The traditional approaches for evaluating the stability of slopes or earth dams subjected to water drawdown are performed under plane-strain two-dimensional (2D) condition. Three-dimensional (3D) effect is neglected in assessment of the safety of a slope limited by rigid structures or a dam constrained by a narrow valley. Based on the kinematic approach of limit analysis, a 3D rotational failure mechanism is adopted here to investigate the influence of water drawdown on stability of 3D slopes. Several stability charts are presented to conveniently estimate the safety factor of 3D slopes under four different types of drawdown processes. An example is given to demonstrate the difference in the safety factors obtained from 2D and 3D analyses. When a slope is constrained to a large width (the ratio of the width to the height B/H ≥ 10.0), the 3D effect can be neglected and the plane-strain analysis is appropriate to assess its safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.