The issue of non-linear robust state estimation in the integration of a strapdown inertial navigation system and global positioning system is addressed in this study. Based on the cubature Kalman filtering frame, a non-linear robust filter called a robust cubature Kalman filter (RCKF) was introduced to address the outliers and the inaccurate model. It has been found that the determination of an optimal restriction parameter is crucial for maintaining the robustness and accuracy of the non-linear robust filter. Unfortunately, the value of this restriction parameter is always determined by experience. In this study, an iterative strategy was proposed to adaptively attain the optimal restriction parameter without much previous experience. To improve the computational stability of the iterative non-linear robust filter, a singular value decomposition strategy was adopted simultaneously. Two case studies indicate that the iterative RCKF can achieve greater robustness and accuracy using the methodology discussed in this study. K E Y W O R D S cubature Kalman filter, integrated navigation system, non-linear filter, singular value decompositionThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
The accuracy and integrity of structural deformation monitoring can be improved by the GNSS/accelerometer integrated system, and gross error detection is the key to further improving the reliability of GNSS/accelerometer monitoring. Traditional gross error detection methods assume that real-state information is known, and they need to establish state iterators, which leads to low computational efficiency. Meanwhile, in multi-sensor fusion, if the sampling rates are different, the change in the dimension of the observation matrix must be considered, and the calculation is complex. Based on state-domain consistency theory, this paper proposes the State-domain Robust Autonomous Integrity Monitoring by Extrapolation (SRAIME) method for identifying slow-growing gross errors for GNSS/accelerometer integrated deformation monitoring. Compared with the traditional gross error detection method, the proposed method constructs state test statistics based on the state estimated value and the state predicted value, and it directly performs gross error identification in the state domain. This paper deduces the feasibility of the proposed method theoretically and verifies that the proposed method does not need to consider the dimension change of the observation matrix in gross error detection. Meanwhile, in the excitation deformation experiments of the Suntuan River Bridge in Anhui and the Wilford Bridge in the United Kingdom, the slow gradient of the slope was added to the measurement domain, and the traditional AIME method and the method proposed in this paper were adopted for the gross error identification of the GNSS/accelerometer fusion process. The results demonstrate that both methods can effectively detect gross errors, but the proposed method does not need to consider the dimensional change in the observation matrix during the fusion process, which has better applicability to GNSS/accelerometer integrated deformation monitoring.
Aiming at abrupt faults in GNSS/INS integrated systems in complex environments, classical fault detection algorithms are mostly developed from the measurement domain. A robust chi-square test method based on the state domain is proposed in this paper. The fault detection statistic is built based on the difference between the prior state estimation and the posterior state estimation in Kalman filtering. To improve the calculation stability, singular value decomposition (SVD) is used to factor the covariance matrix of the difference. The relevant formulas of the proposed method were theoretically derived, and the relationship between the proposed method and the existing innovation chi-square test method was revealed. The proposed method was compared with state-of-the-art chi-square test methods and verified by GNSS/INS integrated navigation experiments using simulation data and real data. The experimental results show that the proposed method (a) directly works in the state domain, (b) does not require the known real system state, (c) has computational efficiency and good robustness, and (d) accurately detects abrupt faults.
Single receiver positioning has been widely used as a standard and standalone positioning technique for about 25 years. To detect the slowly growing faults caused by satellite and receiver clocks in single receiver positioning, the Autonomous Integrity Monitoring with an Extrapolation method (AIME) was proposed based on the Kalman filter measurement domain. However, AIME was designed with the assumption of there is the same number of visible satellites at each epoch, which limits its application. To address this issue, this paper proposes a state-domain Robust Autonomous Integrity Monitoring with the Extrapolation Method (SRAIME). The slowly growing fault detection statistics is established based on the difference between the estimates of the state propagator and the posterior state estimation in Kalman filtering. Meanwhile, singular value decomposition is adopted to factor the covariance matrix of the difference to increase computational robustness. Besides, the relevant formulas of the proposed method are theoretically derived, and it is proven that the proposed method is suitable for any positioning model based on the Kalman filter. Additionally, the results of two experiments indicate that SRAIME can detect slowly growing faults in single receiver positioning earlier than AIME.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.