BackgroundBanded leaf and sheath blight (BLSB) caused by the necrotrophic fungus Rhizoctonia solani is a devasting disease on maize worldwide, especially in China and Southeast Asia. It is important to understand the interaction mechanism between maize and R. solani for control of invasion and expansion.ResultsIn this study, the expression profile of maize infected by low virulence strain (LVS) and high virulence strain (HVS) of R. solani for 3 and 5 d was analyzed by RNA-sequencing. A total of 3015 and 1628 differentially expressed genes (DEGs) were identified under LVS and HVS infection, respectively. Meanwhile, these DEGs were classified by Gene Ontology (GO) for biological process analysis. Only defense-related GO terms were commonly enriched in LVS- and HVS-regulated genes. Furthermore, a core set of 388 up-regulated genes that are involved in maize response to R. solani infection were identified. Additionally, among the core genes, overexpressing ZmNAC41 and ZmBAK1 enhanced rice resistance to R. solani.ConclusionThe results in this study provide additional insight into maize defense mechanisms against R. solani, and the core genes identified in this study will be important resources for improving BLSB resistance in the future.
Banded leaf and sheath blight (BLSB) caused by the necrotrophic fungus Rhizoctonia solani is a devasting disease on maize worldwide, especially in China and Southeast Asia. To explore the maize defense mechanisms against R. solani expansion, the expression profile of maize infected by low virulence strain (LVS) and high virulence strain (HVS) of R. solani for 3 and 5 d was analyzed by RNA-sequencing. A total of 3015 and 1628 differentially expressed genes (DEGs) were identified under LVS and HVS infection, respectively. Meanwhile, these DEGs were classified by Gene Ontology (GO) for biological process analysis. Only defense-related GO terms were commonly enriched in LVS- and HVS-regulated genes. Furthermore, a core set of 388 up-regulated genes that are involved in maize response to R. solani infection were identified. Additionally, among the core genes, overexpressing ZmNAC41 and ZmBAK1 enhanced rice resistance to R. solani. Taken together, our study provides additional insight into maize defense mechanisms against R. solani, and the core genes identified in this study will be important resources for improving BLSB resistance in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.