Dental pulp repair is a difficult clinical problem. In the present study, the authors aimed to mimic the extracellular matrix of dental pulp tissue structurally and compositionally. Nanofibrous silk fibroin (SF) scaffolds containing hydroxyapatite (HAp) nanoparticles were fabricated by using the freeze-drying approach. Rod-shaped HAp was successfully embedded in the composite scaffold, the diameter of which was about 100–200 nm as shown by transmission electron microscopy analysis. The three-dimensional microstructure of the composite scaffold prepared in various ratios of HAp to SF was observed by scanning electron microscopy and the pore size of the optimal scaffold was about 30–120 μm. Meanwhile, the hemocompatibility of the composite scaffolds was evaluated based on their impact on the clotting function by way of activated partial thromboplastin time, prothrombin time and thromboelastographic assays. The scaffolds possessed a low hemolysis rate of red blood cells. Furthermore, cell culture tests using dental pulp stem cells found that the scaffolds had good biocompatibility. There biomimetic HAp/SF composite scaffolds may serve as a promising biomaterial for dental pulp repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.