Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.
Sleeping disorder is a major health threatening in high-pace modern society. Characterizing sleep behavior with pressure-sensitive, simple fabrication, and decent washability still remains a challenge and highly desired. Here, a pressure-sensitive, large-scale, and washable smart textile is reported based on triboelectric nanogenerator (TENG) array as bedsheet for real-time and self-powered sleep behavior monitoring. Fabricated by conductive fibers and elastomeric materials with a wave structure, the TENG units exhibit desirable features including high sensitivity, fast response time, durability, and water resistance, and are interconnected together, forming a pressure sensor array. Furthermore, highly integrated data acquisition, processing, and wireless transmission system is established and equipped with the sensor array to realize real-time sleep behavior monitoring and sleep quality evaluation. Moreover, the smart textile can further serve as a self-powered warning system in the case of an aged nonhospitalized patients falling down from the bed, which will immediately inform the medical staff. This work not only paves a new way for real-time noninvasive sleep monitoring, but also presents a new perspective for the practical applications of remote clinical medical service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.