To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.
Recyclable, fast and visible-light responsive polymer-dispersed liquid crystal/graphene oxide nanocomposite films were fabricated by solution casting and mechanical stretching.
A series of photomechanical fibers was fabricated with a thermal drawing method by using liquid-crystalline random copolymers containing azobenzene and biphenyl groups in side chain. After being post-cross-linked under mild conditions, these fibers showed photoinduced bending motion away from the light source even though homogeneous alignment of mesogens was observed along the drawing direction. This abnormal photoinduced deformation of the obtained fibers is far different from previously reported light-directed motions about liquid-crystalline fiber and film materials. The interesting photomechanical deformation can be ascribed to the surface volume expansion caused by photoisomerization of azobenzene moieties. Then the photoinduced bending behaviors of these fibers containing different azobenzene concentrations and cross-linking densities were systematically investigated, suggesting that the location of photoresponsive azobenzene played an important role in deciding their photomechanical behaviors. This provides one convenient way of controlling over the photoinduced bending direction through the location of light-active moieties in side chain or cross-linker. In addition, irradiation of visible light accelerated the recovery of bent fibers. These fibers possess quick response, large deformation, and good thermal stability, indicating their promising applications for smart devices and energy conversion devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.