Mesenchymal stem cells (MSCs) have been shown as potential candidates for cell-based therapies for a diverse range of tissue regenerative applications. Therapeutic use of MSCs usually requires culture expansion, which increases the heterogeneity of MSCs in vitro, thus affecting the potency of the MSCs for more specific indications. The capacity for identifying and isolating special subsets of MSCs for treatment of specific diseases therefore holds great clinical significance. An important therapeutic application of MSC is for the regeneration of cartilage tissue. We and others have previously developed label-free microfluidic means to isolate subpopulations of culture expanded MSCs based on distinct biophysical characteristics. Here we utilize a spiral micro-channel device to separate culture expanded MSCs into five subgroups according to cell size, and study their proliferation and chondrogenesis at early, middle and late passages. Results show that in all passages, the medium-size subpopulation (cell size of 17-21 μm), compared to other subpopulations, displays significantly higher proliferation rate and chondrogenic capacity in terms of cartilage extracellular matrix formation. Also, the small cell subpopulation (average cell size of 11-12 μm) shows lower viability, and large cell subpopulation (average cell size 23-25 μm) expresses higher level of senescence-associated β-galactosidase. Finally, we show that repeated microfluidic exclusion of MSCs larger than 21 μm and smaller than 17 μm at every passage during continuous culture expansion result in selected MSCs with faster proliferation and better chondrogenic potential as compared to MSC derived from conventional expansion approach. This study demonstrates the significant merit and utility of size-based cell selection for the application of MSCs in cartilage regeneration.
The salvaged blood may contain some tumour cells after processing with IOCS machine, but these cells are damaged and hence unable to replicate and unlikely to metastasise. The results of this study support the hypothesis that salvaged blood in MSTS is safe for transfusion.
Leukocytes are the essential cells of the immune system that protect the human body against bacteria, viruses, and other foreign invaders. Secretory products of individual leukocytes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAMs), are critical for regulating the inflammatory response and mediating host defense. Conventional single cell analytical methods, such as flow cytometry for cellular surface biomarker studies, are insufficient for performing functional assays of the protease activity of individual leukocytes. Here, an integrated continuous-flow microfluidic assay is developed to effectively detect secretory protease activity of individual viable leukocytes. Leukocytes in blood are first washed on-chip with defined buffer to remove background activity, followed by encapsulating individual leukocytes with protease sensors in water-in-oil droplets and incubating for 1 h to measure protease secretion. With this design, single leukocyte protease profiles under naive and phorbol 12-myristate 13-acetate (PMA)-stimulated conditions are reliably measured. It is found that PMA treatment not only elevates the average protease activity level but also reduces the cellular heterogeneity in protease secretion, which is important in understanding immune capability and the disease condition of individual patients.
Medium perfusion is critical in maintaining high cell concentration in cultures. The conventional membrane filtration method for medium exchange has been challenged by the fouling and clogging of the membrane filters in long‐term cultures. In this study, we present a miniature auto‐perfusion system that can be operated inside a common‐size laboratory incubator. The system is equipped with a spiral microfluidic chip for cell retention to replace conventional membrane filters, which fundamentally overcomes the clogging and fouling problem. We showed that the system supported continuous perfusion culture of Chinese hamster ovary (CHO) cells in suspension up to 14 days without cell retention chip replacement. Compared to daily manual medium change, 25% higher CHO cell concentration can be maintained at an average auto‐perfusion rate of 196 ml/day in spinner flask at 70 ml working volume (2.8 VVD). The auto‐perfusion system also resulted in better cell quality at high concentrations, in terms of higher viability, more uniform and regular morphology, and fewer aggregates. We also demonstrated the potential application of the system for culturing mesenchymal stem cells on microcarriers. This miniature auto‐perfusion system provides an excellent solution to maintain cell‐favorable conditions and high cell concentration in small‐scale cultures for research and clinical uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.