The electrochemical reduction of CO 2 is known to be influenced by the concentration and identity of the anionic species in the electrolyte; however, a full understanding of this phenomenon has not been developed. Here, we present the results of experimental and computational studies aimed at understanding the role of electrolyte anions on the reduction of CO 2 over Cu surfaces. Experimental studies were performed to show the effects of bicarbonate buffer concentration and the composition of other buffering anions on the partial currents of the major products formed by reduction of CO 2 over Cu. It was demonstrated that the composition and concentration of electrolyte anions has relatively little effect on the formation of CO, HCOO À , C 2 H 4 , and CH 3 CH 2 OH, but has a significant effect on the formation of H 2 and CH 4. Continuum modeling was used to assess the effects of buffering anions on the pH at the electrode surface. The influence of pH on the activity of Cu for producing H 2 and CH 4 was also considered. Changes in the pH near the electrode surface were insufficient to explain the differences in activity and selectivity observed with changes in anion buffering capacity observed for the formation of H 2 and CH 4. Therefore, it is proposed that these differences are the result of the ability of buffering anions to donate hydrogen directly to the electrode surface and in competition with water. The effectiveness of buffering anions to serve as hydrogen donors is found to increase with decreasing pK a of the buffering anion.
The development of a descriptor or descriptors that can relate the activity of catalysts to their physical properties is a major objective of catalysis research. In this study, we have found that the apparent activation energy for propene oxidation to acrolein over scheelite-structured, multicomponent, mixed metal oxides (Bi3FeMo2O12, Bi2Mo2.5W0.5O12, and Bi1-x/3V1-xMoxO4, where 0 ≤ x ≤ 1) correlates with the band gap of the catalyst measured at reaction temperature. We show through theoretical analysis of the energy components comprising the activation energy why the band-gap energy is the primary component dependent on catalyst composition and, hence, why one should expect the activation energy for propene oxidation to correlate with the band-gap energy. We also demonstrate that the change in band-gap energy with composition arises from the interplay between the sizes and energies of the V 3d, Fe 3d, Mo 4d, and W 5d orbitals, which give rise to the lowest unoccupied crystal orbitals. Both the utility of the band-gap energy as a descriptor for catalytic activity and the role of orbital overlap in determining the band gap are likely to be general features in mixed metal oxide oxidation catalysts, enabling the rational design of catalysts with greater activity for oxidation reactions.
Tetragonal NaEu(MoO 4 ) 2 with rugby-like microstructures were successfully synthesized by a hydrothermal method in an EDTA-mediated process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) techniques were employed to characterize the products in detail. It was found that the amount of EDTA, reaction temperature and pH value are important parameters affecting the morphology, crystallinity and size of the final product, respectively. The possible formation mechanism for the microrugbies was proposed on the basis of a series of time-dependent experiments. This facile method was also successfully applied in the synthesis of NaSm(MoO 4 ) 2 and NaGd(MoO 4 ) 2 microrugbies. The photoluminescence (PL) properties of NaEu(MoO 4 ) 2 microrugbies were strongly dependent on the size and crystallinity. The calcined products displayed excellent luminescence behaviors with a high color purity and have the potential to be applied in LED devices. The possible reasons for the difference in the relative intensities of luminescence are also discussed in detail.
Terahertz (THz) waves show great potential in nondestructive testing, biodetection and cancer imaging. Despite recent progress in THz wave near-field probes/apertures enabling raster scanning of an object's surface, an efficient, nonscanning, noninvasive, deep subdiffraction imaging technique remains challenging. Here, we demonstrate THz near-field microscopy using a reconfigurable spintronic THz emitter array (STEA) based on the computational ghost imaging principle. By illuminating an object with the reconfigurable STEA followed by computing the correlation, we can reconstruct an image of the object with deep subdiffraction resolution. By applying an external magnetic field, inline polarization rotation of the THz wave is realized, making the fused image contrast polarization-free. Time-of-flight (TOF) measurements of coherent THz pulses further enable objects at different distances or depths to be resolved. The demonstrated ghost spintronic THz-emitter-array microscope (GHOSTEAM) is a radically novel imaging tool for THz near-field imaging, opening paradigm-shifting opportunities for nonintrusive label-free bioimaging in a broadband frequency range from 0.1 to 30 THz (namely, 3.3-1000 cm −1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.