Different from developing neural networks (NNs) for general-purpose processors, the development for NN chips usually faces with some hardware-specific restrictions, such as limited precision of network signals and parameters, constrained computation scale, and limited types of non-linear functions.This paper proposes a general methodology to address the challenges. We decouple the NN applications from the target hardware by introducing a compiler that can transform an existing trained, unrestricted NN into an equivalent network that meets the given hardware's constraints. We propose multiple techniques to make the transformation adaptable to different kinds of NN chips, and reliable for restrict hardware constraints.We have built such a software tool that supports both spiking neural networks (SNNs) and traditional artificial neural networks (ANNs). We have demonstrated its effectiveness with a fabricated neuromorphic chip and a processing-in-memory (PIM) design. Tests show that the inference error caused by this solution is insignificant and the transformation time is much shorter than the retraining time. Also, we have studied the parameter-sensitivity evaluations to explore the tradeoffs between network error and resource utilization for different transformation strategies, which could provide insights for co-design optimization of neuromorphic hardware and software.
Memristor-based processing-in-memory architecture is a promising solution to the memory bottleneck in the neural network ( NN ) processing. A major challenge for the programmability of such architectures is the automatic compilation of high-level NN workloads, from various operators to the memristor-based hardware that may provide programming interfaces with different granularities. This article proposes a source-to-source compilation framework for such memristor-based NN accelerators, which can conduct automatic detection and mapping of multiple NN operators based on the flexible and rich representation capability of the polyhedral model. In contrast to previous studies, it implements support for pipeline generation to exploit the parallelism in the NN loads to leverage hardware resources for higher efficiency. The evaluation based on synthetic kernels and NN benchmarks demonstrates that the proposed framework can reliably detect and map the target operators. Case studies on typical memristor-based architectures also show its generality over various architectural designs. The evaluation further demonstrates that compared with existing polyhedral-based compilation frameworks that do not support the pipelined execution, the performance can upgrade by an order of magnitude with the pipelined execution, which emphasizes the necessity of our improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.