Recent evidence reveals that aberrant brain insulin signaling plays an important role in the pathology of Alzheimer’s disease (AD). Intranasal insulin administration has been reported to improve memory and attention in healthy participants and in AD patients. However, the underlying molecular mechanisms are poorly understood. Here, we treated intracerebroventricular streptozotocin-injected (ICV-STZ) rats, a commonly used animal model of sporadic AD, with daily intranasal delivery of insulin (2 U/day) for 6 consecutive weeks and then studied their cognitive function with the Morris water maze test and biochemical changes via Western blotting. We observed cognitive deficits, tau hyperphosphorylation, and neuroinflammation in the brains of ICV-STZ rats. Intranasal insulin treatment for 6 weeks significantly improved cognitive function, attenuated the level of tau hyperphosphorylation, ameliorated microglial activation, and enhanced neurogenesis in ICV-STZ rats. Additionally, our results indicate that intranasal delivery of insulin probably attenuates tau hyperphosphorylation through the down-regulation of ERK1/2 and CaMKII in the brains of ICV-STZ rats. Our findings demonstrate a beneficial effect of intranasal insulin and provide the mechanistic basis for treating AD patients with intranasal insulin.
Exosomes, a type of extracellular vesicle, have been shown to be involved in many disorders, including Alzheimer’s disease (AD). Exosomes may contribute to the spread of misfolded proteins such as amyloid-β (Aβ) and α-synuclein. However, the specific diffusion process of exosomes and their final destination in brain are still unclear. In the present study, we isolated exosomes from peripheral plasma and injected them into the hippocampus of an AD mouse model, and investigated exosome diffusion. We found that injected exosomes can spread from the dentate gyrus (DG) to other regions of hippocampus and to the cortex. Exosomes targeted microglia preferentially; this phenomenon is stable and is not affected by age. In AD mice, microglia take up lower levels of exosomes. More interestingly, plasma exosomes cluster around the Aβ plaques and are engulfed by activated microglia nearby. Our data indicate that exosomes can diffuse throughout the brain and may play a role in the dynamics of amyloid deposition in AD through microglia.
SummaryBrain insulin signaling deficits contribute to multiple pathological features of Alzheimer's disease (AD). Although intranasal insulin has shown efficacy in patients with AD, the underlying mechanisms remain largely unillustrated. Here, we demonstrate that intranasal insulin improves cognitive deficits, ameliorates defective brain insulin signaling, and strongly reduces β‐amyloid (Aβ) production and plaque formation after 6 weeks of treatment in 4.5‐month‐old APPswe/PS1dE9 (APP/PS1) mice. Furthermore, c‐Jun N‐terminal kinase activation, which plays a pivotal role in insulin resistance and AD pathologies, is significantly inhibited. The alleviation of amyloid pathology by intranasal insulin results mainly from enhanced nonamyloidogenic processing and compromised amyloidogenic processing of amyloid precursor protein (APP), and from a reduction in apolipoprotein E protein which is involved in Aβ metabolism. In addition, intranasal insulin effectively promotes hippocampal neurogenesis in APP/PS1 mice. This study, exploring the mechanisms underlying the beneficial effects of intranasal insulin on Aβ pathologies in vivo for the first time, highlights important preclinical evidence that intranasal insulin is potentially an effective therapeutic method for the prevention and treatment of AD.
Intracerebroventricular injection of streptozotocin (ICV-STZ) in rodents leads to cognitive impairments and several pathological changes like Alzheimer's disease (AD). However, there is hardly any research about the effect of ICV-STZ on regional cerebral glucose metabolism in rodents. Previous studies have demonstrated that intranasal insulin improves cognition in AD patients. However, the underlying mechanism remains elusive. Here, we treated the ICV-STZ rats with daily intranasal delivery of insulin (2 U/day) for 6 consecutive weeks, then monitored F-fluorodeoxyglucose (F-FDG) uptake using a high-resolution small-animal positron emission tomography (microPET) and studied the expression of neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) using immunohistochemical staining. We observed that F-FDG uptake decreased significantly at the prefrontal cortex, cingulate cortex, striatum, hippocampus, and entorhinal cortex in ICV-STZ rats as compared with the control rats. Intranasal insulin restores the cerebral glucose metabolism in prefrontal and cingulate cortex and attenuates astroglia activation and neuronal loss in the hippocampus of ICV-STZ rats. These findings provide the mechanistic basis for treating AD patients with intranasal insulin.
Osteosarcoma (OS) is a highly malignant tumor occurring in bone tissue with a high propensity to metastasize, and its underlying mechanisms remain largely elusive. The OS prognosis is poor, and improving the survival of OS patients remains a challenge. Current treatment methods such as surgical approaches, chemotherapeutic drugs, and immunotherapeutic drugs remain ineffective. As research progresses, targeted therapy is gradually becoming irreplaceable. In this review, several treatment modalities for osteosarcoma, such as surgery, chemotherapy, and immunotherapy, are briefly described, followed by a discussion of targeted therapy, the important targets, and new technologies for osteosarcoma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.