The mixed infection of duck Tembusu virus (DTMUV) and goose astrovirus (GoAstV) is an important problem that endangers the goose industry. Although quantitative PCR has been widely used in monitoring these two viruses, there is no reliable method to detect them at the same time. In this study, by analyzing the published genomes of DTMUV and goose astrovirus genotype 2 (GoAstV-2) isolated in China, we found that both viruses have high conservation, showing 96.5 to 99.5% identities within different strains of DTMUV and GoAstV, respectively. Subsequently, PCR primers and TaqMan probes were designed to identify DTMUV and GoAstV-2, and different fluorescent reporters were given to two probes for differential diagnosis. Through the optimization and verification, this study finally developed a duplex TaqMan qPCR method that can simultaneously detect the above two viruses. The lower limits of detection were 100 copies/μL and 10 copies/μL for DTMUV and GoAstV-2 under optimal condition. The assay was also highly specific in detecting one or two viruses in various combinations in specimens, and provide tool for clinical diagnosis of mixed infections of viruses in goose.
Background Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. Results The real-time RT-RPA reaction was carried out at a constant temperature of 39°C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/µL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. Conclusions The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.