<p>Cable tension identification based on mode shapes extracted from vibration measurements is a relatively new method. In this method, the cable is equivalent to a beam model hinged at its ends and under axial tension with an unknown length to eliminate the effects of boundary conditions. This study focuses on the influences of sensor arrangement in the measurements on the accuracy of the tension identification. For this purpose, full-scale cable experiments have been carried out, where a number of sensors were attached to the cable to record cable acceleration during artificial excitation. The eigenvalue realization algorithm (ERA) has then been applied to identify the mode shapes and frequencies of the cables from the multiple acceleration measurements. The effects of different sensor arrangement schemes and cable tension identification method based on higher- order modes are compared and discussed.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.