With the progression of Generative Adversarial Networks (GANs), image translation methods has achieved increasingly remarkable performance. However, most available methods can only achieve image level translation, which is unable to precisely control the regions to be translated. In this paper, we propose a novel self-adaptive region translation network (SART) for region-level translation, which uses region-adaptive instance normalization (RIN) and a region matching loss (RML) for this task. We first encode the style and content image for each region with style and content encoder. To translate both shape and texture of the target region, we inject region-adaptive style features into the decoder by RIN. To ensure independent translation among different regions, RML is proposed to measure the similarity between the non-translated/translated regions of content and translated images. Extensive experiments on three publicly available datasets, i.e. Morph, RaFD and CelebAMask-HQ, suggest that our approach demonstrate obvious improvement over state-of-the-art methods like StarGAN, SEAN and FUNIT. Our approach has further advantages in precise control of the regions to be translated. As a result, region level expression changes and step-by-step make-up can be achieved. The video demo is available at (https://youtu.be/DvIdmcR2LEc).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.