The availability of simple, accurate, and affordable cuffless blood pressure (BP) devices has the potential to greatly increase the compliance with measurement recommendations and the utilization of BP measurements for BP telemonitoring. The aim of this study is to evaluate the correlation between findings from routine BP measurements using a conventional sphygmomanometer with the results from a portable ECG monitor combined with photoplethysmography (PPG) for pulse wave registration in patients with arterial hypertension. Methods: The study included 500 patients aged 32–88 years (mean 64 ± 7.9 years). Mean values from three routine BP measurements by a sphygmomanometer with cuff were selected for comparison; within one minute after the last measurement, an electrocardiogram (ECG) was recorded for 3 min in the standard lead I using a smartphone-case based single-channel ECG monitor (CardioQVARK®-limited responsibility company “L-CARD”, Moscow, Russia) simultaneously with a PPG pulse wave recording. Using a combination of the heart signal with the PPG, levels of systolic and diastolic BP were determined based on machine learning using a previously developed and validated algorithm and were compared with sphygmomanometer results. Results: According to the Bland–Altman analysis, SD for systolic BP was 3.63, and bias was 0.32 for systolic BP. SD was 2.95 and bias was 0.61 for diastolic BP. The correlation between the results from the sphygmomanometer and the cuffless method was 0.89 (p = 0.001) for systolic and 0.87 (p = 0.002) for diastolic BP. Conclusion: Blood pressure measurements on a smartphone-case without a cuff are encouraging. However, further research is needed to improve the accuracy and reliability of clinical use in the majority of patients.
Aims: To investigate the potential of a signal processed by smartphone-case based on single lead electrocardiogram (ECG) for left ventricular diastolic dysfunction (LVDD) determination as a screening method. Methods and Results: We included 446 subjects for sample learning and 259 patients for sample test aged 39 to 74 years for testing with 2D-echocardiography, tissue Doppler imaging and ECG using a smartphone-case based single lead ECG monitor for the assessment of LVDD. Spectral analysis of ECG signals (spECG) has been used in combination with advanced signal processing and artificial intelligence methods. Wavelengths slope, time intervals between waves, amplitudes at different points of the ECG complexes, energy of the ECG signal and asymmetry indices were analyzed. The QTc interval indicated significant diastolic dysfunction with a sensitivity of 78% and a specificity of 65%, a Tpeak parameter >590 ms with 63% and 58%, a T value off >695 ms with 63% and 74%, and QRSfi > 674 ms with 74% and 57%, respectively. A combination of the threshold values from all 4 parameters increased sensitivity to 86% and specificity to 70%, respectively (OR 11.7 [2.7-50.9], P < .001). Algorithm approbation have shown: Sensitivity—95.6%, Specificity—97.7%, Diagnostic accuracy—96.5% and Repeatability—98.8%. Conclusion: Our results indicate a great potential of a smartphone-case based on single lead ECG as novel screening tool for LVDD if spECG is used in combination with advanced signal processing and machine learning technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.