Saccharomyces cerevisiae is currently one of the most important foreign gene expression systems. S. cerevisiae is an excellent host for high-value metabolite cell factories due to its advantages of simplicity, safety, and nontoxicity. A promoter, as one of the basic elements of gene transcription, plays an important role in regulating gene expression and optimizing metabolic pathways. Promoters control the direction and intensity of transcription, and the application of promoters with different intensities and performances will largely determine the effect of gene expression and ultimately affect the experimental results. Due to its significant role, there have been many studies on promoters for decades. While some studies have explored and analyzed new promoters with different functions, more studies have focused on artificially modifying promoters to meet their own scientific needs. Thus, this article reviews current research on promoter engineering techniques and related natural promoters in S. cerevisiae. First, we introduce the basic structure of promoters and the classification of natural promoters. This section will help in understanding future studies on promoters. The classification of various promoter strategies is then reviewed. In this section, the research of each promoter engineering strategy is divided into static regulation and dynamic regulation respectively. Finally, by grouping related articles together using various strategies, this review anticipates the future development direction of promoter engineering.
Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IK, IB, NF-B/p65 and tumor necrosis factor (TNF-) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IB/NF-B/p65/TNF- pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.