Deep neural networks (DNNs) achieve great success in blind image quality assessment (BIQA) with large pre-trained models in recent years. Their solutions cannot be easily deployed at mobile or edge devices, and a lightweight solution is desired. In this work, we propose a novel BIQA model, called GreenBIQA, that aims at high performance, low computational complexity and a small model size. GreenBIQA adopts an unsupervised feature generation method and a supervised feature selection method to extract quality-aware features. Then, it trains an XGBoost regressor to predict quality scores of test images. We conduct experiments on four popular IQA datasets, which include two synthetic-distortion and two authentic-distortion datasets. Experimental results show that GreenBIQA is competitive in performance against state-of-the-art DNNs with lower complexity and smaller model sizes.
Blind image quality assessment (BIQA) is a task that predicts the perceptual quality of an image without its reference. Research on BIQA attracts growing attention due to the increasing amount of user-generated images and emerging mobile applications where reference images are unavailable. The problem is challenging due to the wide range of content and mixed distortion types. Many existing BIQA methods use deep neural networks (DNNs) to achieve high performance. However, their large model sizes hinder their applicability to edge or mobile devices. To meet the need, a novel BIQA method with a small model, low computational complexity, and high performance is proposed and named "GreenBIQA" in this work. GreenBIQA includes five steps: 1) image cropping, 2) unsupervised representation generation, 3) supervised feature selection, 4) distortionspecific prediction, and 5) regression and decision ensemble. Experimental results show that the performance of GreenBIQA is comparable with that of state-of-the-art deep-learning (DL) solutions while demanding a much smaller model size and significantly lower computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.