BackgroundThe plasticity of cancer stem cells (CSCs)/tumor-initiating cells (T-ICs) suggests that multiple CSC/T-IC subpopulations exist within a tumor and that multiple oncogenic pathways collaborate to maintain the CSC/T-IC state. Here, we aimed to identify potential therapeutic targets that concomitantly regulate multiple T-IC subpopulations and CSC/T-IC-associated pathways.MethodsA chemoresistant patient-derived xenograft (PDX) model of human esophageal squamous cell carcinoma (ESCC) was employed to identify microRNAs that contribute to ESCC aggressiveness. The oncogenic effects of microRNA-455-3p (miR-455-3p) on ESCC chemoresistance and tumorigenesis were examined by in vivo and in vitro chemoresistance, tumorsphere formation, side-population, and in vivo limiting dilution assays. The roles of miR-455-3p in activation of the Wnt/β-catenin and transforming growth factor-β (TGF-β)/Smad pathways were determined by luciferase and RNA immunoprecipitation assays.ResultsWe found that miR-455-3p played essential roles in ESCC chemoresistance and tumorigenesis. Treatment with a miR-455-3p antagomir dramatically chemosensitized ESCC cells and reduced the subpopulations of CD90+ and CD271+ T-ICs via deactivation of multiple stemness-associated pathways, including Wnt/β-catenin and TGF-β signaling. Importantly, miR-455-3p exhibited aberrant upregulation in various human cancer types, and was significantly associated with decreased overall survival of cancer patients.ConclusionsOur results demonstrate that miR-455-3p functions as an oncomiR in ESCC progression and may provide a potential therapeutic target to achieve better clinical outcomes in cancer patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0669-9) contains supplementary material, which is available to authorized users.
High levels of angiogenesis are associated with poor prognosis in patients with gliomas. However, the molecular mechanisms underlying tumor angiogenesis remain unclear.Methods: The effect of homeobox C10 (HOXC10) on tube formation, migration, and proliferation of human umbilical vein endothelial cells (HUVECs) and on chicken chorioallantoic membranes (CAMs) was examined. An animal xenograft model was used to examine the effect of HOXC10 on xenograft angiogenesis or the effect of bevacizumab, a monoclonal antibody against vascular endothelial growth factor A (VEGFA), on HOXC10-overexpressing xenografts. A chromatin immunoprecipitation assay was applied to investigate the mechanism in which HOXC10 regulated VEGFA expression.Results: Overexpressing HOXC10 enhanced the capacity of glioma cells to induce tube formation, migration and proliferation of HUVECs, and neovascularization in CAMs, while silencing HOXC10 had the opposite result. We observed that CD31 staining was significantly increased in tumors formed by HOXC10-overexpressing U251MG cells but reduced in HOXC10-silenced tumors. Mechanistically, HOXC10 could transcriptionally upregulate VEGFA expression by binding to its promoter. Strikingly, treatment with bevacizumab, a monoclonal antibody against VEGFA, significantly inhibited the growth of HOXC10-overexpressing tumors and efficiently impaired angiogenesis. Protein arginine methyltransferase 5 (PRMT5) and WD repeat domain 5 (WDR5), both of which regulate histone post-translational modifications, were required for HOXC10-mediated VEGFA upregulation. Importantly, a significant correlation between HOXC10 levels and VEGFA expression was observed in a cohort of human gliomas.Conclusions: This study suggests that HOXC10 induces glioma angiogenesis by transcriptionally upregulating VEGFA expression, and may represent a potential target for antiangiogenic therapy in gliomas.
Gliomas are a lethal class of brain cancer, with a median survival below 15 months in spite of therapeutic advances. The poor prognosis of this disease is largely attributed to acquired chemotherapy resistance, and new strategies are urgently needed to target resistant glioma cells. Herein, our study demonstrated that tripartite motif-containing 14 (TRIM14) overexpressed in glioma specimens (including tissues and cell lines), and that high level of TRIM14 predicted poor outcome of glioma patients. Furthermore, we found that upregulation of TRIM14 in glioma cells conferred chemoresistance to temozolomide in vitro and in vivo; conversely, silencing TRIM14 sensitized glioma cells to temozolomide. These findings demonstrated that TRIM14 stabilized dishevelled (Dvl2) and subsequently activated the canonical Wnt signaling and promoted chemoresistance. Moreover, inhibition of Dvl2 reversed the oncogenic effect of TRIM14 on chemoresistance. Importantly, consistent with the abovementioned results, we found that TRIM14 expression was significantly associated with hyperactivation of canonical Wnt pathway in clinical glioma specimens. Collectively, the study reveals a new molecular mechanism driving chemotherapy resistance in gliomas, and suggests an opportunity to develop novel therapeutic interventions against gliomas.
Constitutive activation of the Wnt/β-catenin pathway promotes malignant proliferation and it is inversely correlated with the prognosis of patients with breast cancer. However, mutations in key regulators, such as APC, Axin and β-catenin, contribute to aberrant activation of the Wnt/β-catenin signaling pathway in various cancers, but rarely found in breast cancer, suggesting that other mechanisms might be involved in the activation of Wnt/β-catenin signaling in breast cancer. In the present study, we found that miR-1229 expression was markedly upregulated in breast cancer and associated with poor survival. Overexpressing miR-1229 promoted while inhibiting miR-1229 reduced, proliferation of breast cancer cell proliferation in vitro and tumor growth in vivo. Furthermore, we found that overexpression of miR-1229 activated the Wnt/β-catenin signaling pathway in breast cancer by directly targeting the multiple important negative regulators of Wnt/β-catenin signaling, including adenomatous polyposis coli (APC), glycogen synthase kinase-3β (GSK-3β), and inhibitor of β-catenin and T cell factor (ICAT). Taken together, our results suggest that miR-1229 plays an important role in promotion breast cancer progression and may represent a novel therapeutic target in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.