Epithelial-mesenchymal transition (EMT) plays a critical role in the process of cancer invasion and metastasis. The Wnt/β-catenin signaling pathway is known as a stimulative factor, which may trigger EMT and metastasis of cancer cells. In addition, several microRNAs (miRNAs) have been proven to regulate the EMT process. Recent research revealed that miR‑148a is downregulated in pancreatic cancer. However, the definite role of miR-148a in EMT and invasion of pancreatic cancer is still unknown. The present study attempted to demonstrate the underlying mechanism of miR-148a in the regulation of EMT and invasion of pancreatic cancer cells. Our data revealed that the expression of miR-148a was markedly downregulated in human pancreatic ductal adenocarcinoma (PDAC) cell lines and tissues. In addition, the downregulation of miR-148a was associated with poor prognosis and EMT phenotype. Furthermore, restoration of miR-148a expression inhibited the EMT process, as well as the migration and invasion of BxPC-3 pancreatic cancer cells. Wnt10b, a promoting molecule of the Wnt/β-catenin signaling pathway, was demonstrated by dual‑luciferase reporter assay to be a direct target of miR‑148a. Subsequently, we found that miR‑148a negatively regulated the protein expression of β-catenin, cyclin D1 and MMP-9, which were important components of the Wnt/β-catenin signaling pathway. In conclusion, these findings revealed that miR-148a suppresses EMT and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/β-catenin signaling pathway, and thus, miR-148a may serve as a novel therapeutic target for pancreatic cancer.
LLH is a safe and effective treatment for selected patients with hepatolithiasis, with an advantage over OLH in the field of intraoperative blood loss, intraoperative transfusion, overall complication and postoperative recovery.
BackgroundLignocellulosic biomass is the most abundant resource on earth. Lignocellulose is mainly composed of cellulose, hemicelluloses, and lignin. The special construction of three kinds of constituents led to the prevention of effective degradation. The goal of this work was to investigate the great potentials of bovine rumen for novel cellulolytic bacterial isolation, which may be used for chemicals and biofuel production from lignocellulose.ResultsA cellulolytic strain, ZH-4, was isolated from Inner Mongolia bovine rumen. This strain was identified as Escherichia coli by morphological, physiological, and biochemical characteristics and 16S rDNA gene sequencing. The extracellular enzyme activity analysis showed that this strain produces extracellular cellulases with an exoglucanase activity of 9.13 IU, an endoglucanase activity of 5.31 IU, and a β-glucosidase activity of 7.27 IU at the pH 6.8. This strain was found to produce 0.36 g/L ethanol and 4.71 mL/g hydrogen from corn straw with cellulose degradation ratio of 14.30% and hemicellulose degradation ratio of 11.39%.ConclusionsIt is the first time that a cellulolytic E. coli was isolated and characterized form the bovine rumen. This provided a great opportunity for researchers to investigate the evolution mechanisms of the microorganisms in the rumen and provided great chance to produce biofuels and chemicals directly from engineered E. coli using consolidated bioprocess.
A hybrid sodium ion capacitor is constructed by the double carbon electrode, whose precursors are both from nanofibers of bacterial cellulose, showing a superior electrochemical capacitive performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.