This paper focuses on a class of delayed fractional Cohen–Grossberg neural networks with the fractional order between 1 and 2. Two kinds of criteria are developed to guarantee the finite-time stability of networks based on some analytical techniques. This method is different from those in some earlier works. Moreover, the obtained criteria are expressed as some algebraic inequalities independent of the Mittag–Leffler functions, and thus, the calculation is relatively simple in both theoretical analysis and practical applications. Finally, the feasibility and validity of obtained results are supported by the analysis of numerical simulations.
This paper studies the stability analysis of fractional-order bidirectional associative memory neural networks with mixed time-varying delays. The orders of these systems lie in the interval 1,2. Firstly, a sufficient condition is derived to ensure the finite-time stability of systems by resorting to some analytical techniques and some elementary inequalities. Next, a sufficient condition is obtained to guarantee the global asymptotic stability of systems based on the Laplace transform, the mean value theorem, the generalized Gronwall inequality, and some properties of Mittag–Leffler functions. In particular, these obtained conditions are expressed as some algebraic inequalities which can be easily calculated in practical applications. Finally, some numerical examples are given to verify the feasibility and effectiveness of the obtained main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.