Highly active and low-cost catalysts for hydrogen evolution reaction (HER) are crucial for the development of efficient water splitting. Molybdenum disulfide (MoS2) nanosheets possess unique physical and chemical properties, which make them promising candidates for HER. Herein, we reported a facile, effective, and scalable strategy by a deposition-precipitation method to fabricate metal-doped (Fe, Co, Ni) molybdenum sulfide with a few layers on carbon black as noble metal-free electrocatalysts for HER. The CoMoS phase after thermal annealing in Co-doped MoS2 plays a crucial role for the enhanced HER. The optimized Co-doped MoS2 catalyst shows superior HER performance with a high exchange current density of 0.03 mA·cm(-2), low onset potential of 90 mV, and small Tafel slope of 50 mV·dec(-1), which also exhibits excellent stability of 10000 cycles with negligible loss of the cathodic current. The superior HER activity originates from the synergistically structural and electronic modulations between MoS2 and Co ions, abundant defects in the active edge sites, as well as the good balance between active sites and electronic conductivity. Thanks to their ease of synthesis, low cost, and high activity, the Co-doped MoS2 catalysts appear to be promising HER catalysts for electrochemical water splitting.
Hydrogen produced from electrocatalytic water splitting is a promising route due to the sustainable powers derived from the solar and wind energy. However, the sluggish kinetics at the anode for water splitting makes the highly effective and inexpensive electrocatalysts desirable in oxygen evolution reaction (OER) by structure and composition modulations. Metal-organic frameworks (MOFs) have been intensively used as the templates/precursors to synthesize complex hollow structures for various energy-related applications. Herein, an effective and facile template-engaged strategy originated from bimetal MOFs is developed to construct hollow microcubes assembled by interconnected nanopolyhedron, consisting of intimately dominant FeNi alloys coupled with a small NiFeO oxide, which was confined within carbonitride outer shell (denoted as FeNi/NiFeO@NC) via one-step annealing treatment. The optimized FeNi/NiFeO@NC exhibits excellent electrocatalytic performances toward OER in alkaline media, showing 10 mA·cm at η = 316 mV, lower Tafel slope (60 mV·dec), and excellent durability without decay after 5000 CV cycles, which also surpasses the IrO catalyst and most of non-noble catalysts in the OER, demonstrating a great perspective. The superior OER performance is ascribed to the hollow interior for fast mass transport, in situ formed strong coupling between FeNi alloys and NiFeO for electron transfer, and the protection of carbonitride layers for long stability.
Changes in the crystal system of an ionic nanocrystal during a cation exchange reaction are unusual yet remain to be systematically investigated. In this study, chemical synthesis and computational modeling demonstrated that the height of hexagonal-prism roxbyite (Cu1.8S) nanocrystals with a distorted hexagonal close-packed sulfide anion (S2−) sublattice determines the final crystal phase of the cation-exchanged products with Co2+ [wurtzite cobalt sulfide (CoS) with hexagonal close-packed S2– and/or cobalt pentlandite (Co9S8) with cubic close-packed S2–]. Thermodynamic instability of exposed planes drives reconstruction of anion frameworks under mild reaction conditions. Other incoming cations (Mn2+, Zn2+, and Ni2+) modulate crystal structure transformation during cation exchange reactions by various means, such as volume, thermodynamic stability, and coordination environment.
Despite being technically possible, the hydrogen production by means of electrocatalytic water splitting is still practically unreachable mainly because of the lack of inexpensive and high active catalysts. Herein, a novel and facile approach by melamine polymerization, exfoliation and Co(2+)-assisted thermal annealing is developed to fabricate Co nanoparticles embedded in bamboo-like and nitrogen-rich carbonitride nanotubes (Co@NCN). The electronic interaction between the embedded Co nanoparticles and N-rich carbonitride nanotubes could strongly promote the HER performance. The optimized Co@NCN-800 exhibits outstanding HER activity with an onset potential of -89 mV (vs RHE), a large exchange current density of 62.2 μA cm(-2), and small Tafel slope of 82 mV dec(-1), as well as excellent stability (5000 cycles) in acid media, demonstrating the potential for the replacement of Pt-based catalysts. Control experiments reveal that the superior performance should be ascribed to the synergistic effects between embedded Co nanoparticles and N-rich carbonitride nanotubes, which originate from the high pyridinic N content, fast charge transfer rate from Co particles to electrodes via electronic coupling, and porous and bamboo-like carbonitride nanotubes for more active sites in HER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.