Biomaterial-based bone graft substitute with favorable mechanical and biological properties could be used as an alternative to autograft for large defect treatment. Here, an apatite-collagen-polycaprolactone (Ap-Col-PCL) composite construct was developed with unique nano-micro-macro hierarchical architectures by combining rapid prototyping (RP) fabrication technology and a 3D functionalization strategy. Macroporous PCL framework was fabricated using RP technology, then functionalized by collagen incorporation and biomimetic deposition. Ap-Col-PCL composite construct was characterized with hierarchical architectures of a nanoscale (∼100 nm thickness and ∼1 μm length) platelike apatite coating on the microporous (126 ± 18 μm) collagen networks, which homogeneously filled the macroporous (∼1000 μm) PCL frameworks and possessed a favorable hydrophilic property and compressive modulus (68.75 ± 3.39 MPa) similar to that of cancellous bone. Moreover, in vitro cell culture assay and in vivo critical-sized bone defect implantation demonstrated that the Ap-Col-PCL construct could not only significantly increase the cell adhesion capability (2.0-fold) and promote faster cell proliferation but also successfully bridge the segmental long bone defect within 12 weeks with much more bone regeneration (5.2-fold), better osteointegration (7.2-fold), and a faster new bone deposition rate (2.9-fold). Our study demonstrated that biomimetically ornamented Ap-Col-PCL constructs exhibit a favorable mechanical property, more bone tissue ingrowth, and better osteointegration capability as an effective bone graft substitute for critical-sized bone defect treatment; meanwhile, it can also harness the advantages of RP technology, in particular, facilitating the customization of the shape and size of implants according to medical images during clinical application.
The combination of bone tissue scaffolds with osteogenic induction factors is an effective strategy to facilitate bone healing processes. Here, chitosan (CS)/nano-hydroxyapatite (HA) scaffolds containing simvastatin (SIM)-loaded PLGA microspheres were fabricated by combining a freeze-drying technique with a modified water-oil-water emulsion method. The CS/HA weight ratio of 1:2 was selected by analyzing the effect of HA content on the micro-architecture, mechanical strength, and biocompatibility of the scaffold. Drug release kinetics showed that the SIM encapsulated in the scaffold was released in a sustained manner for up to 30 days. In vitro bioactivity study in rat bone marrow-derived mesenchymal stem cells showed that the SIM-loaded scaffolds had a strong ability in accelerating cell proliferation and inducing osteogenic differentiation. Moreover, an in vivo experiment using a rat calvarial defect model also documented that the SIM-loaded scaffolds had a remarkable effect on bone-promoting regeneration. The results of this study suggest that the SIM-loaded CS/HA scaffold is feasible and effective in bone repair and thus may provide a promising route for the treatment of critical-sized bone defects.
BackgroundExcessive reactive oxygen species production caused by type 2 diabetes conditions can disrupt normal bone metabolism and greatly impair bone regeneration.Materials and methodsIn the present study, curcumin (Cur)-loaded microspheres were incorporated into a fish collagen nano-hydroxyapatite scaffold to promote bone repair under diabetic conditions by inhibiting the reactive oxygen species production.ResultsThe drug release kinetic study showed that the Cur release from the composite scaffolds lasted up to 30 days. The sustained curcumin release from the scaffold significantly inhibited the overproduction of reactive oxygen species in mesenchymal stem cells caused by diabetic serum. Moreover, the Cur-loaded scaffold also remarkedly alleviated the negative effects of diabetic serum on the proliferation, migration, and osteogenic differentiation of mesenchymal stem cells. When implanted into bone defects in type 2 diabetic rats, the Cur-loaded scaffold also showed a greater bone formation capability compared to the pure scaffold.ConclusionThe results of this study suggested that the novel controlled Cur release system may provide a promising route to improve bone regeneration in type 2 diabetic patients.
BackgroundBone tissue engineering is not widely used in clinical treatment. Two main reasons hide behind this: (1) the seed cells are difficult to obtain and (2) the process of tissue engineering bone construction is too complex and its efficiency is still relatively low. It is foreseeable that in the near future, the problem of seed cell sources could be solved completely in tissue engineering bone repair. As for the complex process and low efficiency of tissue engineering bone construction, usually two strategies would be considered: (1) the construction strategy based on injectable bone tissue and (2) the construction strategy based on osteogenic cell sheets. However, the application of injectable bone tissue engineering (iBTE) strategy and osteogenic cell sheet strategy is limited and they could hardly be used directly in repairing defects of large segmental bone, especially load-bearing bone.MethodsIn this study, we built an osteogenic micro-tissue with simple construction but with a certain structure and composition. Based on this, we established a new iBTE repair strategy—osteogenic micro-tissue in situ repair strategy, mainly targeting at solving the problem of large segmental bone defect. The steps are as follows: (1) Build the biodegradable three-dimensional scaffold based on the size of the defect site with 3D printing rapid prototyping technology. (2) Implant the three-dimensional scaffold into the defect site. This scaffold is considered as the “steel framework” that could provide both mechanical support and space for bone tissue growth. (3) Inject the osteogenic micro-tissue (i.e., the “cell-extracellular matrix” complex), which could be considered as “concrete,” into the three-dimensional scaffold, to promote the bone tissue regeneration in situ. Meanwhile, the digested cells were injected as the compared group in this experiment. After 3 months, the effect of in situ bone defect repair of osteogenic micro-tissue and digested cells was compared.ResultsIt is confirmed that osteogenic micro-tissue could achieve a higher efficiency on cell usage and has a better repair effect than the digested cells.ConclusionsOsteogenic micro-tissue repairing strategy would be a more promising clinical strategy to solve the problem of large segmental bone defect.Electronic supplementary materialThe online version of this article (10.1186/s13287-018-1064-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.