Single‐atom catalysts (SACs) with highly active sites atomically dispersed on substrates exhibit unique advantages regarding maximum atomic efficiency, abundant chemical structures, and extraordinary catalytic performances for multiple important reactions. In particular, M–N–C SACs (M=transition metal atom) demonstrate optimal electrocatalytic activity for the oxygen reduction reaction (ORR) and have attracted extensive attention recently. Despite substantial efforts in fabricating various M–N–C SACs, the principles for regulating the intrinsic electrocatalytic activity of their active sites have not been sufficiently studied. In this Review, we summarize the regulation strategies for promoting the intrinsic electrocatalytic ORR activity of M–N–C SACs by modulation of the center metal atoms, the coordinated atoms, the environmental atoms, and the guest groups. Theoretical calculations and experimental investigations are both included to afford a comprehensive understanding of the structure–performance relationship. Finally, future directions of developing advanced M–N–C SACs for electrocatalytic ORR and other analogous reactions are proposed.
Bifunctional oxygen reduction and evolution constitute the core processes for sustainable energy storage. The advances on noble-metal-free bifunctional oxygen electrocatalysts are reviewed.
Hydrogen peroxide (H2O2) is a green oxidizer widely involved in a vast number of chemical reactions. Electrochemical reduction of oxygen to H2O2 constitutes an environmentally friendly synthetic route. However, the oxygen reduction reaction (ORR) is kinetically sluggish and undesired water serves as the main product on most electrocatalysts. Therefore, electrocatalysts with high reactivity and selectivity are highly required for H2O2 electrosynthesis. In this work, a synergistic strategy is proposed for the preparation of H2O2 electrocatalysts with high ORR reactivity and high H2O2 selectivity. A Co−Nx−C site and oxygen functional group comodified carbon‐based electrocatalyst (named as Co–POC–O) is synthesized. The Co–POC–O electrocatalyst exhibits excellent catalytic performance for H2O2 electrosynthesis in O2‐saturated 0.10 m KOH with a high selectivity over 80% as well as very high reactivity with an ORR potential at 1 mA cm−2 of 0.79 V versus the reversible hydrogen electrode (RHE). Further mechanism study identifies that the Co−Nx−C sites and oxygen functional groups contribute to the reactivity and selectivity for H2O2 electrogeneration, respectively. This work affords not only an emerging strategy to design H2O2 electrosynthesis catalysts with remarkable performance, but also the principles of rational combination of multiple active sites for green and sustainable synthesis of chemicals through electrochemical processes.
The modulation effect has been widely investigated to tune the electronic state of single‐atomic M‐N‐C catalysts to enhance the activity of oxygen reduction reaction (ORR). However, the in‐depth study of modulation effect is rarely reported for the isolated dual‐atomic metal sites. Now, the catalytic activities of Fe‐N4 moiety can be enhanced by the adjacent Pt‐N4 moiety through the modulation effect, in which the Pt‐N4 acts as the modulator to tune the 3d electronic orbitals of Fe‐N4 active site and optimize ORR activity. Inspired by this principle, we design and synthesize the electrocatalyst that comprises isolated Fe‐N4/Pt‐N4 moieties dispersed in the nitrogen‐doped carbon matrix (Fe‐N4/Pt‐N4@NC) and exhibits a half‐wave potential of 0.93 V vs. RHE and negligible activity degradation (ΔE1/2=8 mV) after 10000 cycles in 0.1 M KOH. We also demonstrate that the modulation effect is not effective for optimizing the ORR performances of Co‐N4/Pt‐N4 and Mn‐N4/Pt‐N4 systems.
Lithium–sulfur (Li–S) batteries have extremely high theoretical energy density that make them as promising systems toward vast practical applications. Expediting redox kinetics of sulfur species is a decisive task to break the kinetic limitation of insulating lithium sulfide/disulfide precipitation/dissolution. Herein, we proposed a porphyrin‐derived atomic electrocatalyst to exert atomic‐efficient electrocatalytic effects on polysulfide intermediates. Quantifying electrocatalytic efficiency of liquid/solid conversion through a potentiostatic intermittent titration technique measurement presents a kinetic understanding of specific phase evolutions imparted by the atomic electrocatalyst. Benefiting from atomically dispersed “lithiophilic” and “sulfiphilic” sites on conductive substrates, the finely designed atomic electrocatalyst endows Li–S cells with remarkable cycling stablity (cyclic decay rate of 0.10% in 300 cycles), excellent rate capability (1035 mAh g−1 at 2 C), and impressive areal capacity (10.9 mAh cm−2 at a sulfur loading of 11.3 mg cm−2). The present work expands atomic electrocatalysts to the Li–S chemistry, deepens kinetic understanding of sulfur species evolution, and encourages application of emerging electrocatalysis in other multielectron/multiphase reaction energy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.