Under the background of excess capacity and energy saving in iron and steel enterprises, the hot rolling batch scheduling problem based on energy saving is a multi-objective and multi constraint optimization problem. In this paper, a hybrid multi-objective prize-collecting vehicle routing problem (Hybrid Price Collect Vehicle Routing Problem, HPCVRP) model is established to ensure minimum energy consumption, meet process rules, and maximize resource utilization. A two-phase Pareto search algorithm (2PPLS) is designed to solve this model. The improved MOEA/D with a penalty based boundary intersection distance (PBI) algorithm (MOEA/D-PBI) is introduced to decompose the HPCVRP in the first phase. In the second phase, the multi-objective ant colony system (MOACS) and Pareto local search (PLS) algorithm is used to generate approximate Pareto-optimal solutions. The final solution is then selected according to the actual demand and preference. In the simulation experiment, the 2PPLS is compared with five other algorithms, which shows the superiority of 2PPLS. Finally, the experiment was carried out on actual slab data from a steel plant in Shanghai. The results show that the model and algorithm can effectively reduce the energy consumption in the process of hot rolling batch scheduling.
In the EMO (evolutionary multi-objective, EMO) algorithm, MaOPs (many objective optimization problems, MaOPs) are sometimes difficult to keep the balance of convergence and diversity. The decomposition based EMO developed for MaOPs has been proved to be effective, and BBO/Complex (the biogeography based optimization for complex system, BBO/Complex) algorithm is a low complexity algorithm. In this paper, a decomposition and adaptive weight adjustment based BBO/Complex algorithm (DAWA-BBO/Complex) for MaOPs is proposed. First, a new method based on crowding distance is designed to generate a set of weight vectors with good uniformly. Second, an adaptive weight adjustment method is used to solve MaOPs with complex Pareto optimal front. Subsystem space obtains a non-dominated solution by a new selection strategy. The experimental results show that the algorithm is superior to other new algorithms in terms of convergence and diversity in DTLZ benchmark problems. Finally, the algorithm is used to solve the problem of NC (numerical control machine, NC) cutting parameters, and the final optimization result is obtained by AHP (Analytic Hierarchy Process, AHP) method. The results show that the cutting speed is 10.8m/min, back cutting depth is 0.13mm, the cutting time is 504s and the cutting cost is 22.15yuan. The proposed algorithm can effectively solve the practical optimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.