An epidemic model which describes vector-borne plant diseases is proposed with the aim to investigate the effect of insect vectors on the spread of plant diseases. Firstly, the analytical formula for the basic reproduction number R 0 is obtained by using the next generation matrix method, and then the existence of disease-free equilibrium and endemic equilibrium is discussed. Secondly, by constructing a suitable Lyapunov function and employing the theory of additive compound matrices, the threshold for the dynamics is obtained. If R 0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable, which means that the plant disease will disappear eventually; if R 0 > 1, then the endemic equilibrium is globally asymptotically stable, which indicates that the plant disease will persist for all time. Finally some numerical investigations are provided to verify our theoretical results, and the biological implications of the main results are briefly discussed in the last section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.