[1] To control the severe soil erosion in the Loess Plateau, China, a great number of soil conservation measures including terracing, afforestation, and construction of sedimenttrapping dams have been implemented since the 1950s. These measures have resulted in large-scale land use and land cover change. It is important to evaluate the impacts of these soil conservation measures on streamflow as streamflow is an important determinant on catchment sediment yield and obviously is related to water security in the region. In this study, data from 11 catchments in the Loess Plateau were analyzed to investigate the responses of streamflow to the land use/cover changes. The nonparametric MannKendall test and the Pettitt test were used to identify trends and change points in the streamflow records. All 11 catchments had significant negative trend in annual streamflow of À0.13 to À1.58 mm a À1 . Change points in streamflow occurred between 1971 and 1985. A method was employed to evaluate the impacts of climate variability and land use/ cover changes on mean annual streamflow on the basis of precipitation and potential evaporation. It was estimated that the land use/cover changes accounted for over 50% of the reduction in mean annual streamflow in 8 out of the 11 catchments. However, climate (i.e., precipitation and potential evaporation) played a more important role in reducing the streamflow in the three remaining catchments. Among the soil conservation measures, construction of sediment-trapping dams and reservoirs, with associated irrigation water extractions from the latter, appeared to be the main cause of the reduced streamflow.Citation: Zhang, X., L. Zhang, J. Zhao, P. Rustomji, and P. Hairsine (2008), Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China, Water Resour. Res., 44, W00A07,
Current climate models systematically underestimate the strength of oceanic fronts associated with strong western boundary currents, such as the Kuroshio and Gulf Stream Extensions, and have difficulty simulating their positions at the mid-latitude ocean's western boundaries. Even with an enhanced grid resolution to resolve ocean mesoscale eddies-energetic circulations with horizontal scales of about a hundred kilometres that strongly interact with the fronts and currents-the bias problem can still persist; to improve climate models we need a better understanding of the dynamics governing these oceanic frontal regimes. Yet prevailing theories about the western boundary fronts are based on ocean internal dynamics without taking into consideration the intense air-sea feedbacks in these oceanic frontal regions. Here, by focusing on the Kuroshio Extension Jet east of Japan as the direct continuation of the Kuroshio, we show that feedback between ocean mesoscale eddies and the atmosphere (OME-A) is fundamental to the dynamics and control of these energetic currents. Suppressing OME-A feedback in eddy-resolving coupled climate model simulations results in a 20-40 per cent weakening in the Kuroshio Extension Jet. This is because OME-A feedback dominates eddy potential energy destruction, which dissipates more than 70 per cent of the eddy potential energy extracted from the Kuroshio Extension Jet. The absence of OME-A feedback inevitably leads to a reduction in eddy potential energy production in order to balance the energy budget, which results in a weakened mean current. The finding has important implications for improving climate models' representation of major oceanic fronts, which are essential components in the simulation and prediction of extratropical storms and other extreme events, as well as in the projection of the effect on these events of climate change.
Hydrographic data collected from research cruises, bottom-anchored moorings, driftingIce-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km 3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations. Plain Language AbstractThe Beaufort Gyre centered in the Canada Basin of the Arctic Ocean is the major reservoir of fresh water in the Arctic. The primary focus of this study is on quantifying variability and trends in liquid (water) and solid (sea ice) freshwater content in this region. The Beaufort Gyre Exploration Program was initiated in 2003 to synthesize results of historical data analysis, design and conduct long-term observations, and to provide information for numerical modeling under the umbrella of the FAMOS (Forum for Arctic Observing and Modeling Synthesis) project. The data collected from research cruises, moorings, Ice-Tethered Profiler observations, and satellite altimetry document an increase of more than 6,400 km 3 of liquid freshwater content from 2003 to 2018, a 40% growth relative to the climatology of the 1970s. This fresh water volume is comparable to the fresh water volume released to the sub-arctic seas during the Great Salinity Anomaly episode of the 1970s. Thus, since the 2000s, the stage has been set for another possible release of fresh water to lower latitudes with accompanying climate impacts, including changes to sea ice conditions, ocean circulation, and ecosystems of the Sub-Arctic similar to the influence of the Great Salinity Anomaly observed in the 1970s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.