Ionizing radiation creates free radicals, the effect of which is enhanced by the presence of oxygen; a low oxygen level produces radioprotective effects for insects compared with irradiation in ambient air. Modified (controlled) atmosphere packaging is used for maintaining quality and shelf-life extension; therefore, treatment efficacy may be affected, and there is a need to determine the critical O2 levels that may cause radioprotective effects. Late third-instar Bactrocera dorsalis (Hendel) larvae were irradiated in bags filled with ambient or low-oxygen air (0%, 2%, 4%, 6%, 8% O2) and were exposed to radiation doses of 8 to 64 Gy with intervals of 8 Gy. Efficacy was measured by the prevention of adult emergence. Dose–response data on mortality (failure of adult emergence) were analyzed via two-way ANOVA (analysis of variance), ANCOVA (analysis of covariance), and probit regression. The difference in radiotolerance was only significant in 0% O2 atmospheres through two-way ANOVA; therefore, the 95% confidence limits (CLs) of lethal dose ratios at LD99 were used to determine significant differences between treatments at different O2 levels. The differences in radiotolerance were significant in 0% and 2% O2 but insignificant in 4%, 6%, and 8% O2 environments when compared with radiation in ambient air. The critical threshold of radioprotective effects for late third-instar B. dorsalis larvae is an O2 level of ≥4% and <6%, but a maximum radiation dose of 14 Gy can compensate for this effect during phytosanitary irradiation treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.