The reversible boronic acid-diol interaction empowers boronic acid receptors' saccharide binding capacities, rendering them a class of lectin mimetic, termed "boronlectins". Boronic acids follow lectin functions not just in being able to bind saccharides, but in multivalent saccharide binding that enhances both affinity and selectivity. For almost a decade, efforts have been made to achieve and improve selectivity for given saccharide targets, most notably glucose, by using properly positioned boronic acids, offering multivalent interactions. Incorporation of several boronic acid groups into a covalent framework or non-covalent assembly of boronic acid are two general methods used to create such smart sensors, of which the latter resembles lectin oligomerisation that affords multivalent saccharide-binding architectures. In this review, we discuss supramolecular selective sensing of saccharides by using simple boronic acids in their aggregate forms, after a brief survey of the general aspects of boronic acid-based saccharide sensing.
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme‐free, high‐efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single‐stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in‐depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000‐fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
A highly selective and sensitive fluorescence probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one (1), is developed for imaging the hypoxic status of tumor cells via the indirect detection of nitroreductase. The detection mechanism is based on the fact that nitroreductase can selectively catalyze the reduction of the nitro group in 1 to a hydroxylamine or amino group in the presence of reduced nicotinamide adenine dinucleotide as an electron donor that is indispensable, followed by the 1,6-rearrangement-elimination and the release of resorufin. As a result, the reaction produces a distinct color and fluorescence change from almost colorless and nonfluorescent to pink and strong red fluorescence. The fluorescence increase of probe 1 at λ(550/585 nm) is directly proportional to the concentration of nitroreductase in the range of 15-300 ng/mL, with a detection limit of 0.27 ng/mL. The ready reduction of the nitro group in 1 under hypoxic conditions leads to the establishment of a sensitive and selective fluorescence method for imaging the hypoxic status of tumor cells, and with this method Hela and A549 cells under normoxic and hypoxic conditions (even for different extents of hypoxia) can be differentiated successfully. This method is simple and may be useful for the imaging of disease-relevant hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.