Objective Changes in gut microbiota have been linked to systemic lupus erythematosus (SLE), but knowledge is limited. Our study aimed to provide an in‐depth understanding of the contribution of gut microbiota to the immunopathogenesis of SLE. Methods Fecal metagenomes from 117 patients with untreated SLE and 52 SLE patients posttreatment were aligned with 115 matched healthy controls and analyzed by whole‐genome profiling. For comparison, we assessed the fecal metagenome of MRL/lpr mice. The oral microbiota origin of the gut species that existed in SLE patients was documented by single‐nucleotide polymorphism–based strain‐level analyses. Functional validation assays were performed to demonstrate the molecular mimicry of newly found microbial peptides. Results Gut microbiota from individuals with SLE displayed significant differences in microbial composition and function compared to healthy controls. Certain species, including the Clostridium species ATCC BAA‐442 as well as Atopobium rimae, Shuttleworthia satelles, Actinomyces massiliensis, Bacteroides fragilis, and Clostridium leptum, were enriched in SLE gut microbiota and reduced after treatment. Enhanced lipopolysaccharide biosynthesis aligned with reduced branched chain amino acid biosynthesis was observed in the gut of SLE patients. The findings in mice were consistent with our findings in human subjects. Interestingly, some species with an oral microbiota origin were enriched in the gut of SLE patients. Functional validation assays demonstrated the proinflammatory capacities of some microbial peptides derived from SLE‐enriched species. Conclusion This study provides detailed information on the microbiota of untreated patients with SLE, including their functional signatures, similarities with murine counterparts, oral origin, and the definition of autoantigen‐mimicking peptides. Our data demonstrate that microbiome‐altering approaches may offer valuable adjuvant therapies in SLE.
PTEN regulates normal signaling through the B cell receptor (BCR). In systemic lupus erythematosus (SLE), enhanced BCR signaling contributes to increased B cell activity, but the role of PTEN in human SLE has remained unclear. We performed fluorescence-activated cell sorting analysis in B cells from SLE patients and found that all SLE B cell subsets, except for memory B cells, showed decreased expression of PTEN compared with B cells from healthy controls. Moreover, the level of PTEN expression was inversely correlated with disease activity. We then explored the mechanisms governing PTEN regulation in SLE B cells. Notably, in normal but not SLE B cells, interleukin-21 (IL-21) induced PTEN expression and suppressed Akt phosphorylation induced by anti-immunoglobulin M and CD40L stimulation. However, this deficit was not primarily at the signaling or the transcriptional level, because IL-21-induced STAT3 (signal transducer and activator of transcription 3) phosphorylation was intact and IL-21 up-regulated PTEN mRNA in SLE B cells. Therefore, we examined the expression of candidate microRNAs (miRs) that could regulate PTEN: SLE B cells were found to express increased levels of miR-7, miR-21, and miR-22. These miRs down-regulated the expression of PTEN, and IL-21 stimulation increased the expression of miR-7 and miR-22 in both normal and SLE B cells. Indeed, a miR-7 antagomir corrected PTEN-related abnormalities in SLE B cells in a manner dependent on PTEN. Therefore, defective miR-7 regulation of PTEN contributes to B cell hyperresponsiveness in SLE and could be a new target of therapeutic intervention.
IntroductionOur previous study has reported that, in patients with untreated new-onset lupus (UNOL), there was an abnormal increase in the number of CD4+CD25-Foxp3+ T cells that correlated with disease activity and significantly decreased after treatment. However, little is known about the nature of this cell entity. The aim of this study was to explore the nature of abnormally increased CD4+CD25-Foxp3+ T cells in UNOL patients.MethodsThe expressions of surface (CD4, CD25, CD127, chemokine receptor 4 [CCR4], glucocorticoid-induced tumor necrosis factor receptor [GITR], and cytotoxic T lymphocyte-associated antigen 4 [CTLA-4]) and intracellular (Foxp3) molecules as well as cytokine synthesis of peripheral blood mononuclear cells from 22 UNOL patients were analyzed by flow cytometry. The proliferative and suppressive capacities of different T-cell subgroups from UNOL patients were also assessed.ResultsIn UNOL patients, the percentages of CD127low/- in CD25high, CD25low, and CD25- subpopulations of CD4+Foxp3+ T cells were 93.79% ± 3.48%, 93.66% ± 2.31%, and 91.98% ± 2.14%, respectively (P > 0.05), whereas the expressions of Foxp3 showed significant differences in CD25high (91.38% ± 2.57%), CD25low (71.89% ± 3.31%), and CD25- (9.02% ± 2.21%) subpopulations of CD4+CD127low/- T cells (P < 0.01). The expressions of surface CCR4, GITR, and CTLA-4 on CD4+CD25-Foxp3+ T cells were significantly less than CD4+CD25+Foxp3+ T cells (P < 0.05). Moreover, unlike CD4+CD25+Foxp3+ T cells, CD4+CD25-Foxp3+ T cells also synthesized interferon-gamma, interleukin (IL)-4, IL-2, and IL-17 (P < 0.05), though less than CD4+CD25+Foxp3- T cells. The suppressive capacity was most prominent in CD4+CD25highCD127low/-, followed by CD4+CD25lowCD127low/-. CD4+CD25-CD127- T cells showed the least suppressive capacity, which was similar to the effector T cells.ConclusionsCD4+CD25-Foxp3+ T cells in UNOL patients are different from regulatory T cells, both phenotypically and functionally. CD127 is not an appropriate surface marker for intracellular Foxp3 in CD4+CD25- T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.