A high-order finite difference method for the two-dimensional complex Ginzburg-Landau equation is considered. It is proved that the proposed difference scheme is uniquely solvable and unconditionally convergent. The convergent order in maximum norm is two in temporal direction and four in spatial direction. In addition, an efficient alternating direction implicit scheme is proposed. Some numerical examples are given to confirm the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.