CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes. Most strikingly, in Cisd2 transgenic mice, a persistently high level of Cisd2 is sufficient to delay cardiac aging and attenuate age-related structural defects and functional decline. In addition, it results in a younger cardiac transcriptome pattern during old age. Our findings indicate that Cisd2 plays an essential role in cardiac aging and in the heart’s electromechanical functioning. They highlight Cisd2 as a novel drug target when developing therapies to delay cardiac aging and ameliorate age-related cardiac dysfunction.
CISD2 is located within the chromosome 4q region frequently deleted in hepatocellular carcinoma (HCC). Mice with Cisd2 heterozygous deficiency develop a phenotype similar to the clinical manifestation of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Cisd2 haploinsufficiency causes a low incidence (20%) of spontaneous HCC and promotes HBV-associated and DEN-induced HCC; conversely, 2-fold overexpression of Cisd2 suppresses HCC in these models. Mechanistically, Cisd2 interacts with Serca2b and mediates its Ca pump activity via modulation of Serca2b oxidative modification, which regulates ER Ca uptake and maintains intracellular Ca homeostasis in the hepatocyte. CISD2 haploinsufficiency disrupts calcium homeostasis, causing ER stress and subsequent NAFLD and NASH. Hemizygous deletion and decreased expression of CISD2 are detectable in a substantial fraction of human HCC specimens. These findings substantiate CISD2 as a haploinsufficient tumor suppressor and highlights Cisd2 as a drug target when developing therapies to treat NAFLD/NASH and prevent HCC.
SummarySkeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle‐specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.