Many infections and stress signals can rapidly activate the NLRP3 inflammasome to elicit robust inflammatory responses. This activation requires a priming step, which is thought to be mainly for upregulating NLRP3 transcription. However, recent studies report that the NLRP3 inflammasome can be activated independently of transcription, suggesting that the priming process has unknown essential regulatory steps. Here, we report that JNK1-mediated NLRP3 phosphorylation at S194 is a critical priming event and is essential for NLRP3 inflammasome activation. We show that NLRP3 inflammasome activation is disrupted in NLRP3-S194A knockin mice. JNK1-mediated NLRP3 S194 phosphorylation is critical for NLRP3 deubiquitination and facilitates its self-association and the subsequent inflammasome assembly. Importantly, we demonstrate that blocking S194 phosphorylation prevents NLRP3 inflammasome activation in cryopyrin-associated periodic syndromes (CAPS). Thus, our study reveals a key priming molecular event that is a prerequisite for NLRP3 inflammasome activation. Inhibiting NLRP3 phosphorylation could be an effective treatment for NLRP3-related diseases.
Highlights d Acetylation suppresses cGAS activity d Aspirin directly acetylates cGAS d Aspirin inhibits cGAS-mediated interferon production d Aspirin alleviates DNA-induced autoimmunity in AGS mouse models and patient cells
CUEDC2, a CUE-domain-containing protein, modulates inflammation, but its involvement in tumorigenesis is still poorly understood. Here, we report that CUEDC2 is a key regulator of macrophage function and critical for protection against colitis-associated tumorigenesis. CUEDC2 expression is dramatically upregulated during macrophage differentiation, and CUEDC2 deficiency results in excessive production of proinflammatory cytokines. The level of CUEDC2 in macrophages is modulated by miR- 324-5p. We find that Cuedc2 KO mice are more susceptible to dextran-sodium-sulfate-induced colitis, and macrophage transplantation results suggest that the increased susceptibility results from the dysfunction of macrophages lacking CUEDC2. Furthermore, we find that Cuedc2 KO mice are more prone to colitis-associated cancer. Importantly, CUEDC2 expression is almost undetectable in macrophages in human colon cancer, and this decreased CUEDC2 expression is associated with high levels of interleukin-4 and miR-324-5p. Thus, CUEDC2 plays a crucial role in modulating macrophage function and is associated with both colitis and colon tumorigenesis.
BackgroundAs an important danger signal, the presence of DNA in cytoplasm triggers potent immune responses. Cyclic GMP-AMP synthase (cGAS) is a recently characterized key sensor for cytoplasmic DNA. The engagement of cGAS with DNA leads to the synthesis of a second messenger, cyclic GMP-AMP (cGAMP), which binds and activates the downstream adaptor protein STING to promote type I interferon production. Although cGAS has been shown to play a pivotal role in innate immunity, the exact regulation of cGAS activation is not fully understood.ResultsWe report that an E3 ubiquitin ligase, RING finger protein that interacts with C kinase (RINCK, also known as tripartite motif protein 41, TRIM41), is critical for cGAS activation by mediating the monoubiquitination of cGAS. Using CRISPR/Cas9, we generated RINCK-deletion cells and showed that the deficiency of RINCK resulted in dampened interferon production in response to cytosolic DNA. Consistently, the RINCK-deletion cells also exhibited insufficient interferon production upon herpes simplex virus 1, a DNA virus, infection. As a result, the viral load in RINCK-deficient cells was significantly higher than that in wild-type cells. We also found that RINCK deficiency inhibited the up-stream signaling of DNA-triggered interferon production pathway, which was reflected by the phosphorylation of the TANK-binding kinase 1 and the interferon regulatory factor 3. Interestingly, we found that RINCK binds to cGAS and promotes the monoubiquitination of cGAS, thereby positively regulating the cGAS-mediated cGAMP synthesis.ConclusionsOur study reveals that monoubiquitination is an important regulation for cGAS activation and uncovers a critical role of RINCK in the cGAS-mediated innate immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.