Ecosystem services (ES) are directly affected by land use and land cover changes (LUCC); however, the impacts of extended period LUCC on ES are poorly explored. Here, we mapped the 1998–2019 annual land use and land cover in the Dongting Lake Region (China) and explored the spatiotemporal evolution of LUCC and landscape patterns (i.e., composition, shape, and aggregation) and their relationship with ES, including carbon storage, gross primary production (GPP), water conservation capacity, and crop yield in the region. The results showed a significant increase in forest areas and impervious surfaces and a decrease in croplands and bare lands with spatial heterogeneity. Carbon storage was strongly correlated with forest, cropland, waterbody, impervious surface, and bare land, and there was a nonlinear relationship between landscape patterns and ES. The trade-offs and synergies (correlations) among ES varied considerably, with crop yield being significantly synergistic with carbon stocks, GPP, or GPP with carbon stocks. This study revealed the nonlinear relationship between landscape patterns and ES, and the mechanism of landscape characteristics on ES. The findings can provide scientific support for regional land use planning, ES regulation, and landscape optimization in the lake region.
The impacts of drought and/or warming on forests have received great attention in recent decades. Although the extreme drought and/or warming events significantly changed the forest demography and regional carbon cycle, the seasonality quantifying the impacts of these climate extremes with different severities on the productivity of subtropical coniferous forests remains poorly understood. This study evaluated the effects of seasonal drought and/or warming on the net primary productivity (NPP) of subtropical coniferous forests (i.e., Cunninghamia lanceolata and Pinus massoniana forests) from Hengyang–Shaoyang Basin in southern China using the Ecosystem Demography model, Version 2.2 (ED-2.2) and based on the datasets from forest inventory, meteorological reanalysis, and remotely sensed products. The results showed that the goodness of fit of the DBH-height allometric equations was better than that of the default in ED-2.2 after model calibration; the ED-2.2 model qualitatively captured the seasonality of NPP in the subtropical coniferous forests; and the mismatch between simulated annual NPP and MODIS-NPP (MOD17A3HGF) became smaller over time. The effect of seasonal drought on NPP was greater than that of warming; the decline rate of NPP gradually increased and decreased with time (from July to October) under the seasonal drought and warming scenarios, respectively; NPP decreased more seriously under the combined drought-warming scenario in October, with an average decrease of 31.72%, than the drought-only and warming-only scenarios; seasonal drought had an obvious legacy impact on productivity recovery of subtropical coniferous forests, but it was not the case for warming. With the increase in drought severity, the average values of soil available water and NPP together showed a downward trend. With the increase in warming severity, the average values of canopy air space temperature increased, but NPP decreased. Seasonal drought and/or warming limit forest production through decreasing soil moisture and/or increasing canopy air space temperature, which impact on plant photosynthesis and productivity, respectively. Our results highlight the significance of taking into account the impacts of seasonal warming and drought when evaluating the productivity of subtropical coniferous forests, as well as the significance of enhancing the resistance and resilience of forests to future, more severe global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.