Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and it carries a poor prognosis due to a high rate of recurrence or metastasis after surgery. Bmi-1 plays a significant role in the growth and metastasis of many solid tumours. However, the exact mechanisms underlying Bmi-1-mediated cell invasion and metastasis, especially in HCC, are not yet known. In the present study, we sought to evaluate the expression of Bmi-1 in HCC samples and its relationship with clinicopathological characteristics and prognostic value, we also investigated related mechanisms underlying Bmi-1-mediated cell invasion in HCC. Our results showed that Bmi-1 is upregulated in HCC tissues compared to matched non-cancer liver tissues; and its expression is positively associated with tumour size, metastasis, venous invasion and AJCC TNM stage, respectively; multivariate analysis showed that high expression of Bmi-1 was an independent prognostic factor for overall survival. In addition, the shRNA-mediated inhibition of Bmi-1 reduced the invasiveness of two HCC cell lines in vitro by upregulating phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) expression, inhibiting the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and downregulating the expression and activities of matrix metalloproteinase (MMP)-2 and MMP-9 and vascular endothelial growth factor (VEGF). These data demonstrate that Bmi-1 plays a vital role in HCC invasion and that Bmi-1 is a potential therapeutic target for HCC.
Melatonin, an indolamine mainly produced in the pineal gland, has received a great deal of attention in the last decade because of its oncostatic effects, which are due to its immunomodulatory, antiproliferative, antioxidant and its possible antiangiogenesis properties. Herein, we document its antiproliferative action on human umbilical vein endothelial cells (HUVECs). Moreover, the possible cell signaling pathways when melatonin inhibited HUVEC proliferation were explored in this study. Primary HUVECs were isolated, cultured, purified and identified before the studies were performed. HUVECs were found to possess G-protein-coupled membrane receptors for melatonin (MT1 and MT2) and also nuclear melatonin receptors (RORalpha and RORbeta, especially RORbeta). No obvious expression of RORgamma was found. We investigated the membrane receptors and several intracellular signaling pathways including mitogen-activated protein kinases (MAPK)/extracellular signal-related kinases (ERK), phosphoinositol-3-kinase (PI3K)/Akt and protein kinases C (PKC) involved in antiproliferative action of melatonin on HUVECs. The blockade of these pathways using special inhibitors decreased cell growth. Furthermore, the constitutive activation of nuclear factor kappa B (NF-kappaB) contributed to the proliferation of HUVECs. High concentrations of melatonin inhibited both NF-kappaB expression and its binding ability to DNA, possibly through inactivation of ERK/Akt /PKC pathways. Taken together, high concentrations of melatonin markedly reduced HUVEC proliferation; the antiproliferative action of melatonin was closely correlated with following pathway: melatonin receptors/ERK/PI3K/Akt/PKC/ NF-kappaB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.