Large-volume debris flow events are defined when the volume of solid materials exceeds 1 million m 3 . Traditional engineering measures, such as check dams, diversion channels, and flumes, are effective for normal debris flow control but are not sufficient to control large-volume debris flows. Experiments were conducted with an artificial step-pool system on the new Wenjiagou Gully to mitigate large-volume debris flows. The old Wenjiagou Gully was buried by 81.6 million m 3 of loose solid material created by a landslide that was triggered by the Wenchuan earthquake on May 12, 2008. The new gully was formed during the scouring process caused by debris flows in 2008. Large-volume debris flows were initiated by rainstorm flood with high kinetic energy. The artificial step-pool system was constructed with huge and big boulders on the new Wenjiagou Gully in 2009. The step-pool system dissipated flow energy in steps and hydraulic jumps. Analysis proved that the step-pool system dissipated two-third of the kinetic energy of flow; thus, the critical discharge for triggering debris flow increased threefold. Due to the step-pool system maximized the flow resistance and protected the bed sediment and banks from erosion, the rainstorm floods in 2009 did not trigger debris flows. In 2010, the step-pool system was replaced with 20 check dams. Huge boulders were broken into small pieces of diameter less than 0.5 m and were used as building materials for the 20 dams. Without the protection of the step-pool system, a rainstorm flood scoured the base of the dams and caused failures for all of the 20 check dams in August 2010. The flow incised the gully bed by 50 m. The loose bank materials slid into the flow mixed with water and formed a large-volume debris flow with a volume of 4.5 million m 3 . Many houses were buried by the debris flow, and 12 people were killed. Comparison of the two strategies proved that energy dissipation structures are necessary for controlling large-volume debris flows. Check dams, if they are stable, may reduce the potential of bank failures and control debris flows. The step-pool system dissipates flow energy and control gully bed incision and bank failure. A combination of check dams and step-pool systems may be the most effective for mitigating debris flows.
We present an independent assessment of the health and water sustainability of the East River (Dongjiang) in South China, which is the source of nearly 80% of Hong Kong's water supply. Field measurements show that the water quality in the upper and middle reaches is generally good and well exceeds the drinking quality standard, with high bio-diversity. The streamflow of the East River Basin is satisfactorily simulated using both the distributed MIKE-SHE model and the lumped HSPF model. With an average streamflow of 760 m3/s, the River is able to satisfy the current water demand. Using the HSPF model, the water quality is found to have deteriorated in recent years. In addition to water supply, the River also supports a variety of needs such as hydro-power generation, waste assimilation, navigation, habitat for aquatic life, and expulsion of sea water intrusion. Using the projected need of 150 m3/s for water supply, the instream flow requirement based on hydrological and water quality simulation is estimated to be 467 m3/s in 2010. This suggests that the water sustainability of the East River requires alternative strategies, which may include integrated water resources management, provision of better wastewater treatment, and water and soil conservation.
Abstract. The influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching-braided to fully braided planform conditions along trunk and tributary reaches of the Upper Yellow River in western China. Although the regional geology and climate are relatively consistent across the study area, there is a distinct gradient in the presence and abundance of riparian vegetation for these reaches atop the QinghaiTibet Plateau (elevations in the study area range from 2800 to 3400 m a.s.l.). To date, the influence of vegetative impacts upon channel planform and bedload transport capacity of alluvial reaches of the Upper Yellow River remains unclear because of a lack of hydrological and field data. In this region, the types and pattern of riparian vegetation vary with planform type as follows: trees exert the strongest influence in the anabranching reach, the meandering reach flows through meadow vegetation, the anabranching-braided reach has a grass, herb, and sparse shrub cover, and the braided reach has no riparian vegetation. A non-linear relation between vegetative cover on the valley floor and bedload transport capacity is evident, wherein bedload transport capacity is the highest for the anabranching reach, roughly followed by the anabranching-braided, braided, and meandering reaches. The relationship between the bedload transport capacity of a reach and sediment supply from upstream exerts a significant influence upon channel stability. Bedload transport capacity during the flood season (June-September) in the braided reach is much less than the rate of sediment supply, inducing bed aggradation and dynamic channel adjustments. Rates of channel adjustment are less pronounced for the anabranching-braided and anabranching reaches, while the meandering reach is relatively stable (i.e., this is a passive meandering reach).
This study examined the temporal trend of sedimentation in China's Three Gorges Reservoir (TGR) from compiled sediment data at multiple temporal scales. Based on decade-averaged annual sediment loads, a decreasing trend of sediment supply between 1950s and 2000s was found, with a lower-than-expected mean sedimentation rate. From 2003 to 2013, the annual sediment supply generally decreased, with the annual sediment deposition rate being about 50% less than that predicted with prior numerical models. The reduced annual sedimentation rate was attributed to (relatively) small dam building within the upstream watershed, conservation activities and sand/gravel mining. Morphological changes at two cross sections within the TGR between 2003 and 2013 indicated that sediment deposition caused only limited bed accretion along the main course of the TGR. In the tail area of the TGR, where sediment transport ceases first, the sedimentation occurring between 2004 and 2013 was insufficient to impede navigation. These results indicate that at least as a first approximation sedimentation in the TGR is well controlled, making it a subdued 'river dragon'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.