While pseudocapacitive electrodes have potential to store more energy than electrical double-layer capacitive electrodes, their rate capability is often limited by the sluggish kinetics of the Faradaic reactions or poor electronic and ionic conductivity. Unlike most transition-metal oxides, MoO 2 is a very promising material for fast energy storage, attributed to its unusually high electronic and ionic conductivity; the one-dimensional tunnel is ideally suited for fast ionic transport. Here we report our findings in preparation and characterization of ultrathin MoO 2 sheets with oriented tunnels as a pseudocapacitive electrode for fast charge storage/release. A composite electrode consisting of MoO 2 and 5 wt % GO demonstrates a capacity of 1097 C g −1 at 2 mV s −1 and 390 C g −1 at 1000 mV s −1 while maintaining ∼80% of the initial capacity after 10,000 cycles at 50 mV s −1 , due to minimal change in structural features of the MoO 2 during charge/ discharge, except a small volume change (∼14%), as revealed from operando Raman spectroscopy, X-ray analyses, and density functional theory calculations. Further, the volume change during cycling is highly reversible, implying high structural stability and long cycling life.
While several proton-conducting anode materials have shown excellent tolerance to sulfur poisoning, the mechanism is still unclear due largely to the inability to probe miniscule amounts of sulfur-containing species using conventional surface characterization techniques. Here we present our findings in unraveling the mechanism of water-mediated sulfur tolerance of a proton conductor under operating conditions empowered by surface-sensitive, operando surface-enhanced Raman spectroscopy (SERS) coupled with impedance spectroscopy. Contrary to the conventional view that surface-adsorbed sulfur is removed mainly by oxygen anions, it is found that −SO4 groups on the surface of the proton conductor are converted to SO2 by a water-mediated process, as confirmed by operando SERS analysis and density functional theory (DFT)-based calculations. The combination of operando SERS performed on a model electrode and theoretical computation offers an effective approach to investigate into complex mechanisms of electrode processes in various electrochemical systems, providing information vital to achieve the rational design of better electrode materials.
We studied the structural and morphological evolution of Rh clusters on an ordered ultrathin alumina film grown on NiAl(100) in annealing processes, under ultrahigh vacuum conditions and with various surface probe techniques. The Rh clusters, prepared on vapor deposition of Rh onto the alumina film at 300 K, had an fcc phase and grew in the (100) orientation; the annealing altered the cluster structure little—the lattice parameter decreased by a factor <2%—but the cluster morphology significantly. With elevated temperature, small clusters (diameter ≤1.5 nm) decreased little in size; in contrast, large clusters (diameter ≥2.0 nm) varied in a complex manner—their mean diameter decreased to about 1.5 nm on annealing to 450 K, despite their similar height, while it increased to above 2.0 nm at temperature ≥570 K. This atypical decrease in size was governed predominantly by energetics. Such a reduced size enhanced the total surface area as well as the reactivity of the clusters toward methanol decomposition, so increased the production of D2 (H2) and CO from decomposed methanol-d4 (or methanol). The result implies a higher temperature tolerance for Rh clusters on the alumina film and a practical approach to prepare small Rh clusters with high reactivity.
Pt and Rh nanoclusters, grown on deposition of Pt and Rh vapors onto graphene/Pt(111), show separate reactivity toward the decomposition of methanol-d4. The Pt (Rh) clusters had a mean diameter 2.0–3.5 nm (2.1–4.0 nm) and height 0.45–0.94 nm (0.41–0.9 nm) evolving with the coverage; they were structurally ordered, having an fcc phase and growing in (111) orientation, and had lattice constants similar to their bulk values. Methanol-d4 on the Pt clusters did not decompose but desorbed mostly, disparate from that on Pt(111) surface; the disparity arose as the adsorption energies of methanol-d4 on most surface sites of the Pt clusters became smaller than their single crystal counterpart. This size effect, nevertheless, did not apply on the Rh clusters, despite their similar atomic stacking; the Rh clusters showed a reactivity similar to that of the Rh(111) surface because the adsorption energies of methanol-d4 on both Rh clusters and Rh(111) are comparable. The distinct size dependence was rationalized through their electronic structures and charge distribution of Fukui function mapping. Our results suggest that reactive transition metals do not necessarily become more reactive while they are scaled down to nanoscale; their reactivity evolves with their size in a manner largely dependent on their electronic nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.