A big challenge for nonlinear optical (NLO) materials is the application in high power lasers, which needs the simultaneous occurrence of large second harmonic generation (SHG) and high laser induced damage threshold (LIDT). Herein we report the preparation of a new Ga2Se3 phase, which shows the SHG intensities of around 2.3 times and the LIDT of around 16.7 times those of AgGaS2 (AGS), respectively. In addition, its IR transparent window ca. 0.59–25 μm is also significantly wider than that of AGS (ca. 0.48–≈11.4 μm). The occurrence of the strong SHG responses and good phase‐matching indicate that the structure of the new Ga2Se3 phase can only be non‐centrosymmetric and have a lower symmetry than the cubic γ‐phase. The observed excellent SHG and phase‐matching properties are consistent with our diffraction experiments and can be well explained by using the orthorhombic models obtained through our high throughput simulations.
Novel noncentrosymmetric (K0.38Ba0.81)Ga2Se4 can be obtained from centrosymmetric BaGa2Se4via partial substitution, and it demonstrates promising balanced NLO properties.
Electronic structures, spontaneous polarization, dynamical and nonlinear optical (NLO) properties of polar oxide ZnSnO(3) with LiNbO(3) (LN)-type structure have been investigated in the framework of density functional theory. By analyzing the Born effectives of LN-type ZnSnO(3), we find that Z* of Zn atoms show relatively large anomalous behavior. The spontaneous polarization is attributed to the large displacement of Zn atoms because of the mixed ionic-covalent character between the Zn-O bonds. The optical dielectric tensor is nearly the same; however the static dielectric tensor shows strongly anisotropy. Furthermore, the nonlinear optical properties are calculated by using 2n + 1 theorem applied to an electric-field dependent energy functional. The large dielectric constants and NLO susceptibilities indicate that the LN-type ZnSnO(3) would be a candidate as a high-performance dielectric and nonlinear optical material.
Abstract2D inorganic bimolecular crystals, consisting of two different inorganic molecules, are expected to possess novel physical and chemical properties due to the synergistic effect of the individual components. However, 2D inorganic bimolecular crystals remain unexploited because of the difficulties in preparation arising from non‐typical layered structures and intricate intermolecular interactions. Here, the synthesis of 2D inorganic bimolecular crystal SbI3·3S8 nanobelts via a facile vertical microspacing sublimation strategy is reported. The as‐synthesized SbI3·3S8 nanobelts exhibit strong in‐plane anisotropy of phonon vibrations and intramolecular vibrations as well as show anisotropic light absorption with a high dichroism ratio of 3.9. Furthermore, it is revealed that the second harmonic generation intensity of SbI3·3S8 nanobelts is highly dependent on the excitation wavelength and crystallographic orientation. This work can inspire the growth of more 2D inorganic bimolecular crystals and excite potential applications for bimolecular optoelectronic devices.
The
balance between second harmonic generation (SHG) intensity
and laser-induced damage threshold (LIDT), together with phase-matchable
behavior, is the key point for exploration of novel nonlinear optical
(NLO) materials. In this work, the NLO property of defect wurtzite-type
hexagonal-In2Se3 (γ) is extensively explored
first. It exhibits a strong SHG intensity of 2.6 × AgGaS2 (AGS) at 2.1 μm, and a high powder LIDT of 7.3 ×
AGS. From wurtzite to γ-In2Se3, the birefringence
changes from 0.003 to 0.075, resulting in the phase-matchable phenomenon
of γ-In2Se3. This is well ascribed to
the contribution of the unique InSe5 unit in γ-In2Se3 from the result of birefringence calculation
and analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.