In this paper, the well-known Föppl–Hencky membrane problem—that is, the problem of axisymmetric deformation of a transversely uniformly loaded and peripherally fixed circular membrane—was resolved, and a more refined closed-form solution of the problem was presented, where the so-called small rotation angle assumption of the membrane was given up. In particular, a more effective geometric equation was, for the first time, established to replace the classic one, and finally the resulting new boundary value problem due to the improvement of geometric equation was successfully solved by the power series method. The conducted numerical example indicates that the closed-form solution presented in this study has higher computational accuracy in comparison with the existing solutions of the well-known Föppl–Hencky membrane problem. In addition, some important issues were discussed, such as the difference between membrane problems and thin plate problems, reasonable approximation or assumption during establishing geometric equations, and the contribution of reducing approximations or relaxing assumptions to the improvement of the computational accuracy and applicability of a solution. Finally, some opinions on the follow-up work for the well-known Föppl–Hencky membrane were presented.
AbstractIn recent years, with the higher requirements for the performance of cement-based materials and the call for energy conservation and environmental protection, a wave of research on new materials has set off, and various high-performance concrete and more environmentally friendly geopolymers have appeared in the public. With a view to solving the defects of energy consumption, environmental protection and low toughness of traditional cement-based materials. At the same time, nanomaterials have become a focus of current research. Therefore, the research on the properties of cement-based materials and geopolymers modified by graphene and its derivatives has aroused extensive interest of researchers. Graphene-based nanomaterials are one of them. Because of their large specific surface area, excellent physical properties have been favored by many researchers. This paper reviews the research progress of graphene-based nanomaterials in improving the properties of cement-based materials and geopolymer materials, and points out the main challenges and development prospects of such materials in the construction field in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.