AbstractIn recent years, with the higher requirements for the performance of cement-based materials and the call for energy conservation and environmental protection, a wave of research on new materials has set off, and various high-performance concrete and more environmentally friendly geopolymers have appeared in the public. With a view to solving the defects of energy consumption, environmental protection and low toughness of traditional cement-based materials. At the same time, nanomaterials have become a focus of current research. Therefore, the research on the properties of cement-based materials and geopolymers modified by graphene and its derivatives has aroused extensive interest of researchers. Graphene-based nanomaterials are one of them. Because of their large specific surface area, excellent physical properties have been favored by many researchers. This paper reviews the research progress of graphene-based nanomaterials in improving the properties of cement-based materials and geopolymer materials, and points out the main challenges and development prospects of such materials in the construction field in the future.
Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.
In the recent decades, traditional concrete poses a great challenge to the modernization of the construction industry because of low tensile strength, poor toughness, and weak resistance to cracking. To overcome these problems, ultra-high performance concrete (UHPC) with superior mechanical properties and durability is developed for broad application prospect in the future engineering construction. However, UHPC is less eco-friendly because it consumes more cement compared with the traditional concrete. The manufacturing of cement produces large amounts of carbon dioxide and therefore leads to the greenhouse effect. Nanomaterials consist of microstructural features that range from 0.1 to 100 nm in size, which exhibit the novel properties different from their bulk counterparts, including filling effect, surface activity, and environmental sustainability. This paper reviews the effect of various nanomaterials used in UHPC to partially replace the cement or as an additive on the microstructures, mechanical properties, and other properties of UHPC. In addition, the limitations and shortcomings of the current research are analyzed and summarized, and development directions are provided for future research on the application of nanomaterials in UHPC.
The pretension of building membrane structures may relax over its service lifetime, which may cause engineering failure under external loads. Therefore, the pretension of building membrane structures should be monitored or estimated regularly to compare the actual pretension to its design pretension and then to adopt some strengthening measures to mitigate future problems. Based on the geometrically nonlinear vibration of a rectangular orthotropic membrane structure, a nondestructive detection method for monitoring its pretension is developed in this article. This method is achieved by impacting a low-velocity pellet onto the membrane surface to generate vibration and detecting its response amplitude. Then the detected amplitude is converted into a pretension estimate via a derived formula. In addition, experiments for three kinds of conventional membrane material (Heytex H5573, Xing Yi Da, and ZZF 3010) were carried out according to the theoretical idea. The experimental results proved this method is feasible and verified the theoretical derivation is reasonable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.