The SW Songliao Basin is an extremely significant part of the giant sandstone uranium metallogenic belt in northern China. The Yaojia Formation is the most significant ore-bearing layer in the region. However, the poorly constrained sedimentology of the Yaojia Formation has substantially hindered the understanding of the basin and the exploration of uranium deposits within it. To determine the sedimentology, provenance, and tectonic setting of the Yaojia Formation in the study area, we conducted petrography, whole-rock geochemical analysis, and electron probe research. Based on the results of the study, it appears that the Yaojia Formation sandstone is predominantly composed of lithic sandstone and feldspar lithic sandstone. Uranium exists in two forms: as independent minerals and as adsorption uranium. Pitchblende is the most common independent uranium mineral, with small amounts of coffinite also occurring. The ratios of Sr/Ba, V/(V+Ni), V/Cr, Ni/Co, and (Cu+Mo)/Zn of the samples indicate that the Yaojia Formation was deposited in a sub- to oxygen-rich freshwater environment with a moderately stratified bottom water body and smooth circulation. The geochemical characteristics of the Yaojia Formation sandstones imply that they are primarily derived from felsic igneous rocks in the upper continental crust in active continental margin and continental island arc environments. According to geochemistry and previous detrital zircon U-Pb chronology studies, the Mesozoic and Late Paleozoic felsic igneous rocks of the southern Great Xing’an Mountains are the principal sources of the Yaojia Formation in the SW Songliao Basin. Besides providing sediments for the study area, the uranium-rich felsic igneous rocks in the source areas also represent a long-term, stable, and ideal source of uranium, suggesting substantial potential for uranium exploration in the study area.
Pegmatite-type uranium mineralization occurs in the Shangdan domain of the North Qinling Orogenic Belt, representing a significant uraniferous province. The Guangshigou deposit is the largest U deposit of the district. Within the North Qinling area, a series of Caledonian granitic igneous rocks intruded the Proterozoic metamorphic rocks of the Qinling Group in two magmatic stages: (i) the Early Silurian Huichizi granite that was derived from a low degree of partial melting of thickened lower basaltic crust combined with mantle-derived materials following the subduction of the Shangdan Ocean; and (ii) the Late Silurian–Early Devonian Damaogou granite and associated pegmatites derived from the same source but emplaced in a late tectonic post-collisional extension environment. In the Guangshigou deposit, the U mineralization mainly occurs as uraninite disseminated in U-rich granitic biotite pegmatites, which formed by assimilation-fractional crystallization magmatic processes. Petrographic observations showed evidence for coeval crystallization of uraninite and other rock-forming minerals of the host pegmatite including quartz, feldspar, biotite, zircon, monazite, apatite, and xenotime. In addition, the low U/Th ratios (~19) and Th, REE, and Y enrichments characterized a magmatic origin for uraninite, which was likely derived from fractionated high-K calc-alkaline pegmatitic magma that experienced various degrees of crustal material contamination. In situ U-Pb isotopic dating performed by Secondary-Ion Mass Spectrometry (SIMS) on uraninite from the Guangshigou deposit yielded a crystallization age of 412 ± 3 Ma, which is concomitant (within errors) with the emplacement age of the host pegmatite (415 ± 2 Ma) and constrained the U ore genesis to the Early Devonian, which corresponds to the late Caledonian post-collisional extension in the North Qinling area. Uraninite then experienced various degrees of metamictization and/or post-Caledonian hydrothermal alteration characterized by an alteration rim associated with coffinite, chlorite and limonite. Finally, the characteristics of the pegmatite-related Guangshigou deposit exhibiting Th-rich uraninite which was the product of assimilation-fractional crystallization of pegmatitic magma defined a model significantly different than the one established for the world-class Rössing deposit characterized by Th-poor uraninite hosted in alaskite dykes formed by low degree of partial melting of U-rich metasediments.
The Qianjiadian-Baixingtu uranium deposit (QBUD) is in the post-Jurassic extensional Kailu basin of northeast China. There is a well-developed fault system in and adjacent to the deposit, and uranium mineralisation appears controlled by faults F 1, F 2, and F 3. Lots of diabase (dolerite) intrusions related to regional faults are extensive throughout the QBUD. The ellipsoidal and lenticular mineralised bodies in the QBUD conflict with the interlayered oxidation genesis. Furthermore, heat from the diabase intrusions not only makes the wall rocks hard, but plenty of new cement minerals are precipitated from hot fluid flow (HFF). The clastic grains in the host sandstone are strongly altered by HFF. Carbonate cements involves calcite, ankerite, and Fe-rich dolomite. There are three inclusion temperature peaks: ∼90°C, 110-120°C, and 140-150°C, and three ranges of inclusion salinity: 5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.