Cancer stem cells (CSCs) are able to survive after cancer therapies, leading to cancer progression and recurrence in colorectal carcinoma (CRC). Therapies targeting CSCs are believed to be promising strategies for efficiently eradicating cancers. This study was to investigate that how retinoic acid receptor beta (RARB) affected the biological characteristics of CSCs and radio-resistance in CRC and the epigenetic mechanism. The sensitivity of CSCs isolated from HCT116 cells to radiotherapy was reduced compared with the parental cells. Using database querying, we found that RARB was one of the most significantly downregulated gene in radio-resistant cells in CRC. Also, RARB was poorly expressed in our isolated CSCs, and overexpression of RARB inhibited the properties of CSCs and enhanced radiotherapy sensitivity. Mechanistically, the methylation of RARB was higher in CSCs compared with HCT116 cells, which was significantly reduced after the application of DNA methylation inhibitor 5-azacytidine (5-azaC). DNA methyltransferases (DNMT1) was found to be recruited into the RARB promoter. 5-AzaC treatment inhibited DNMT1 activity and improved radiotherapy sensitivity by promoting RARB expression. Our results imply that inhibition of DNMT1 can display a new mechanism for the epigenetic mediation of RARB in radio-resistant CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.