In this paper, the active vibration control of conical shells is studied using velocity feedback and linear quadratic regulator methods. Up to now, many researches on the active vibration control of beams, plates and cylindrical shells have been published, however, to our knowledge, few people have studied the active vibration control of conical shells. Normally, in the equation of motion of the conical shells, some coefficients are variables, which makes the equation of motion of the conical shells very complicated and difficult to solve analytically. In order to solve this problem, Hamilton's principle with the assumed mode method is employed to derive the equation of motion of the complex electromechanical coupling system. This equation of motion for the conical shell and piezoelectric patch system can be easily solved and effectively used for the structural active vibration control. Based on the traditional theory of structural dynamics, this method is easy to understand and is verified by numerical simulations. The forced vibration responses of the conical shells with two piezoelectric patches are computed to study the active vibration control. The optimal design for the locations of the piezoelectric patches is also developed by the genetic algorithm. From the results it can be seen that the control gain has a significant effect on the vibration control of the conical shell, but the effect of the size of the piezoelectric patches on controlling the vibration amplitudes is not so obvious. The overall vibration of the conical shell can be effectively reduced by the velocity feedback control method. With the increase of the control gain, the active damping characteristics of the conical shell are improved. Moreover, the optimal placement scheme of the piezoelectric patches obtained by the genetic algorithm can significantly reduce the vibration amplitudes of the conical shell.
An analytical methodology is presented to study the active vibration control of beams treated with active constrained layer damping (ACLD). This analytical method is based on the conventional theory of structural dynamics. The process of deriving equations is precise and easy to understand. Hamilton’s principle with the Rayleigh–Ritz method is used to derive the equation of motion of the beam/ACLD system. By applying an appropriate external control voltage to activate the piezoelectric constraining layer, a negative velocity feedback control strategy is employed to obtain the active damping and effective vibration control. From the numerical results it is seen that the damping performances of the beam can be significantly improved by the ACLD treatment. With the increase of the control gain, the active damping characteristics are also increased. By equally dividing one ACLD patch into two and properly distributing them on the beam, one can obtain better active vibration control results than for the beam with one ACLD patch. The analytical method presented in this paper can be effectively extended to other kinds of structures.
This study presents design and fabrication of a novel magneto-rheological (MR) damper with bifold flow mode gap to improve damping performance. The proposed MR damper is featured by inner flow mode gap connected to the outer flow mode gap through the feedback hole. A mathematical model of the damping force is established for the proposed MR damper and the magnetic circuit has been analyzed with the finite element method, which is used to validate the principle of the proposed MR damper. A conventional MR damper is fabricated with the same dimensions (radius, length) of the piston and is experimentally compared to confirm advantages of the proposed MR damper. The mechanical performance of the proposed MR damper is experimentally investigated and compared with the results by mathematical model and finite element analysis. The research results show that the controllable damping force and equivalent damping of the MR damper with bifold flow mode gap are much larger than those of the conventional MR damper.
Transcriptome analysis was carried out for wheat seedlings and spikes from hybrid Jingmai 8 and both inbred lines to unravel mechanisms underlying heterosis. Heterosis, known as one of the most successful strategies for increasing crop yield, has been widely exploited in plant breeding systems. Despite its great importance, the molecular mechanism underlying heterosis remains elusive. In the present study, RNA sequencing (RNA-seq) was performed on the seedling and spike tissues of the wheat (Triticum aestivum) hybrid Jingmai 8 (JM8) and its homozygous parents to unravel the underlying mechanisms of wheat heterosis. In total, 1686 and 2334 genes were identified as differentially expressed genes (DEGs) between the hybrid and the two inbred lines in seedling and spike tissues, respectively. Gene Ontology analysis revealed that DEGs from seedling tissues were significantly enriched in processes involved in photosynthesis and carbon fixation, and the majority of these DEGs expressed at a higher level in JM8 compared to both inbred lines. In addition, cell wall biogenesis and protein biosynthesis-related pathways were also significantly represented. These results confirmed that a combination of different pathways could contribute to heterosis. The DEGs between the hybrid and the two inbred progenitors from the spike tissues were significantly enriched in biological processes related to transcription, RNA biosynthesis and molecular function categories related to transcription factor activities. Furthermore, transcription factors such as NAC, ERF, and TIF-IIA were highly expressed in the hybrid JM8. These results may provide valuable insights into the molecular mechanisms underlying wheat heterosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.