Predicting short-term passenger flow accurately is of great significance for daily management and for a timely emergency response of rail transit networks. In this paper, we propose an attention-based Graph–Temporal Fused Neural Network (GTFNN) that can make online predictions of origin–destination (OD) flows in a large-scale urban transit network. In order to solve the key issue of the passenger hysteresis in online flow forecasting, the proposed GTFNN takes finished OD flow and a series of features, which are known or observable, as the input and performs multi-step prediction. The model is constructed from capturing both spatial and temporal characteristics. For learning spatial characteristics, a multi-layer graph neural network is proposed based on hidden relationships in the rail transit network. Then, we embedded the graph convolution into a Gated Recurrent Unit to learn spatial–temporal features. For learning temporal characteristics, a sequence-to-sequence structure embedded with the attention mechanism is proposed to enhance its ability to capture both local and global dependencies. Experiments based on real-world data collected from Chongqing’s rail transit system show that the metrics of GTFNN are better than other methods, e.g., the SMAPE (Symmetric Mean Absolute Percentage Error) score is about 14.16%, with a range from 5% to 20% higher compared to other methods.
Rail expresses play a vital role in intracity and intercity transportations. For accommodating multi-source passenger traffic with different travel demand, while optimizing the energy consumption, we propose a multi-cycle train timetable optimization model and a decomposition algorithm. A periodized spatial-temporal network that can support the integrated optimization of passenger service satisfaction and energy consumption considering multi-cycles is studied as the basis of the modeling. Based on this, an integrated optimization model taking the planning of the train spatial-temporal path, cycle length and active lines as variables is proposed. Then, for solving the issues caused by the complex relationships among the cycle length, line and train spatial-temporal path in large-scale cases, a hybrid heuristic Lagrangian decomposition method is investigated. Numerical experiments under different passenger flow demand scenarios are performed. The results show that the more fluctuating the passenger flow is, the more obvious the advantage of a multi-cycle timetable is. For the scenario with two passenger flow peaks, compared to a single-cycle timetable, the demand satisfaction ratio of the multi-cycle timetable is 4.44% higher and the train vacancy rate is 11.49% lower. A multi-cycle timetable also saves 3.24 h running time and 15,553.6 kwh energy consumption compared to a single-cycle timetable. Large-scale real cases show that this advantage still exists in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.