In this paper, we study the improvement of a storage location strategy through the use of big data technology, including data collection, cluster analysis and association analysis, to improve order picking efficiency. A clustering algorithm is used to categorize the types of goods in orders. Classification is performed based on the turnover of goods, value, sales volume, favorable commodity ratings, whether free shipping is provided and whether cash on delivery is supported. An association algorithm is used to determine the relationships among goods by studying the habits of consumers who buy them. A method for improving the class-based storage strategy is proposed. The picking distance of the improved storage strategy is compared with that of the traditional strategy via simulation experiments. The picking efficiency is shown to be enhanced by the improved strategy.
The Internet of Things (IoT) has become an important strategy in the current round of global economic growth and technological development and provides a new path for the intelligent development of the logistics industry. With the development of the economy, the demand for logistics benefits is becoming more important. The appropriate use of technologies related to IoT to improve logistics efficiency, such as cloud computing, mobile computing and data mining, has become a topic of considerable research interest. Picking operations are currently an extremely important and cumbersome aspect of logistics center tasks. To shorten the picking distance and improve work efficiency, this paper uses the genetic algorithm, ant colony algorithm and cuckoo algorithm to optimize the picking path in a fishbone-layout warehouse and establishes an optimized model of the warehouse picking path under the fishbone layout. Data-mining technology is used to simulate the model and obtain the simulation data under the condition of multiple orders. The results provide a theoretical basis for the study of the fishbone-layout picking path model and has certain practical significance for the efficient operation of logistics enterprises. Through optimization, it is conducive to the sustainable development of enterprises and to achieving long-term profitability.
In order to explore the application of robots in intelligent supply-chain and digital logistics, and to achieve efficient operation, energy conservation, and emission reduction in the field of warehousing and sorting, we conducted research in the field of unmanned sorting and automated warehousing. Under the guidance of the theory of sustainable development, the ESG (Environmental Social Governance) goals in the social aspect are realized through digital technology in the storage field. In the picking process of warehousing, efficient and accurate cargo identification is the premise to ensure the accuracy and timeliness of intelligent robot operation. According to the driving and grasping methods of different robot arms, the image recognition model of arbitrarily shaped objects is established by using a convolution neural network (CNN) on the basis of simulating a human hand grasping objects. The model updates the loss function value and global step size by exponential decay and moving average, realizes the identification and classification of goods, and obtains the running dynamics of the program in real time by using visual tools. In addition, combined with the different characteristics of the data set, such as shape, size, surface material, brittleness, weight, among others, different intelligent grab solutions are selected for different types of goods to realize the automatic picking of goods of any shape in the picking list. Through the application of intelligent item grabbing in the storage field, it lays a foundation for the construction of an intelligent supply-chain system, and provides a new research perspective for cooperative robots (COBOT) in the field of logistics warehousing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.