As a novel type of genetic marker, the microhaplotype has shown promising potential in forensic research. In the present study, we analyzed maternal plasma cell-free DNA (cfDNA) samples from twin pregnancies to validate microhaplotype-based noninvasive prenatal testing (NIPT) for paternity, zygosity, and fetal fraction (FF). Paternity was determined with the combined use of the relMix package, zygosity was evaluated by examining the presence of informative loci with two fetal genome complements, and FF was assessed through fetal allele ratios. Paternity was determined in 19 twin cases, among which 13 cases were considered dizygotic (DZ) twins based on the presence of 3~10 informative loci and the remaining 6 cases were considered monozygotic (MZ) twins because no informative locus was observed. With the fetal genomic genotypes as a reference, the accuracy of paternity and zygosity determination were confirmed by standard short tandem repeat (STR) analysis. Moreover, the lower FF, higher FF, and combined FF in each DZ plasma sample were closely related to the estimated value. This present preliminary study proposes that microhaplotype-based NIPT is applicable for paternity, zygosity, and FF determination in twin pregnancies, which are expected to be advantageous for both forensic and clinical settings.
The need to identify a missing person (MP) through kinship analysis of DNA samples found at a crime scene has become increasingly prevalent. DNA samples from MPs can be severely degraded, contain little DNA and mixed with other contributors, which often makes it difficult to apply conventional methods in practice. This study developed a massively parallel sequencing–based panel that contains 1661 single‐nucleotide polymorphisms (SNPs) with low minor allele frequencies (MAFs) (averaged at 0.0613) in the Chinese Han population, and the strategy for relationship inference from DNA mixtures comprising different numbers of contributors (NOCs) and of varying allele dropout probabilities. Based on the simulated dataset and genotyping results of 42 artificial DNA mixtures (NOC = 2–4), it was observed that the present SNP panel was sufficient for balanced mixtures when referenced to the closest relatives (parents/offspring and full siblings). When the mixture profiles suffered from dropout, incorrect assignments were markedly associated with relatedness, NOC and the dropout level. We, therefore, indicate that SNPs with low MAFs could be reliably interpreted for MP identification through the kinship analysis of complex DNA mixtures. Further studies should be extended to more possible scenarios to test the feasibility of this present approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.