Accurate inversion of land surface geo/biophysical variables from remote sensing data for earth observation applications is an essential and challenging topic for the global change research. Land surface temperature (LST) is one of the key parameters in the physics of earth surface processes from local to global scales. The importance of LST is being increasingly recognized and there is a strong interest in developing methodologies to measure LST from the space. Landsat 8 Thermal Infrared Sensor (TIRS) is the newest thermal infrared sensor for the Landsat project, providing two adjacent thermal bands, which has a great benefit for the LST inversion. In this paper, we compared three different approaches for LST inversion from TIRS, including the radiative transfer equation-based method, the split-window algorithm and the single channel method. Four selected energy balance monitoring sites from the Surface Radiation Budget Network (SURFRAD) were used for validation, combining with the MODIS 8 day emissivity product. For the investigated sites and scenes, results show that the LST inverted from the radiative transfer equation-based method using band 10 has the highest accuracy with RMSE lower than 1 K, while the SW algorithm has moderate accuracy and the SC method has the lowest accuracy.
Cloud computing is the development of parallel computing, distributed computing and grid computing. It has been one of the most hot research topics. Now many corporations have involved in the cloud computing related techniques and many cloud computing platforms have been put forward. This is a favorable situation to study and application of cloud computing related techniques. Though interesting, there are also some problems for so many flatforms. For to a novice or user with little knowledge about cloud computing, it is still very hard to make a reasonable choice. What differences are there for different cloud computing platforms and what characteristics and advantages each has? To answer these problems, the characteristics, architectures and applications of several popular cloud computing platforms are analyzed and discussed in detail. From the comparison of these platforms, users can better understand the different cloud platforms and more reasonablely choose what they want.
Recently, personalised search engines and recommendation systems have been widely adopted by users who require assistance in searching, classifying, and filtering information. This paper presents an overview of the field of personalisation systems and describes current state-of-the-art methods and techniques. It reviews approaches for (1) user profiling, including behaviour, preference, and intention modelling; (2) content modelling, comprising content representation, analysis, and classification; and (3) filtering methods for recommendation, classified into four main categories: rule-based, contentbased, collaborative, and hybrid filtering. The paper also discusses personalisation systems in different domains, and various techniques and their limitations. Finally, it identifies several issues and possible directions for further research that can improve recommendation capabilities and enhance personalised systems.
BackgroundIncreasing evidence indicates that deregulation of microRNAs (miRNAs) is involved in tumorigenesis. Downregulation of microRNA-503 has been observed in various types of diseases, including cancer. However, the biological function of miR-503 in hepatocellular carcinoma (HCC) is still largely unknown. In this study we aimed to elucidate the prognostic implications of miR-503 in HCC and its pathophysiologic role.MethodsQuantitative reverse transcriptase polymerase chain reaction was used to evaluate miR-503 expression in HCC tissues and cell lines. Western blotting was performed to evaluate the expression of the miR-503 target genes. In vivo and in vitro assays were performed to evaluate the function of miR-503 in HCC. Luciferase reporter assay was employed to validate the miR-503 target genes.ResultsmiR-503 was frequently downregulated in HCC cell lines and tissues. Low expression levels of miR-503 were associated with enhanced malignant potential such as portal vein tumor thrombi, histologic grade, TNM stage, AFP level and poor prognosis. Multivariate analysis indicated that miR-503 downregulation was significantly associated with worse overall survival of HCC patients. Functional studies showed miR-503 suppressed the proliferation of HCC cells by induction of G1 phase arrest through Rb-E2F signaling pathways, and thus may function as a tumor suppressor. Further investigation characterized two cell cycle-related molecules, cyclin D3 and E2F3, as the direct miR-503 targets.ConclusionOur data highlight an important role for miR-503 in cell cycle regulation and in the molecular etiology of HCC, and implicate the potential application of miR-503 in prognosis prediction and miRNA-based HCC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.