Medium-entropy alloys (MEAs) are prospective structural materials for emerging advanced nuclear systems because of their outstanding mechanical properties and irradiation resistance. In this study, the microstructure and mechanical properties of three new single-phase body-centered cubic (BCC) structured MEAs (Zr40Nb35Ti25, Zr50Nb35Ti15, and Zr60Nb35Ti5) before and after irradiation were investigated. It is shown that the yield strength and elongation after fracture at room temperature are greater than 900 MPa and 10%, respectively. Three MEAs were irradiated with 3 MeV Fe11+ ions to 8 × 1015 and 2.5 × 1016 ions/cm2 at temperatures of 300 and 500 °C, to investigate the irradiation-induced hardening and microstructure changes. Compared with most conventional alloys, the three MEAs showed only negligible irradiation hardening and even softening in some cases. After irradiation, they exhibit somewhat surprising lattice constant reduction, and the microstructure contains small dislocation loops. Neither cavities nor precipitates were observed. This indicates that the MEAs have better irradiation resistance than traditional alloys, which can be attributed to the high-entropy and lattice distortion effect of MEAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.