The chromatin-remodeling enzyme BRG1 is critical for interferon-gamma (IFN-gamma)-mediated gene induction. Promoter-proximal elements are sufficient to mediate BRG1 dependency at some IFN-gamma targets. In contrast, we show here that at CIITA, which encodes the 'master regulator' of induction of major histocompatibility complex class II, distal elements conferred BRG1 dependency. At the uninduced locus, many sites formed BRG1-independent loops. One loop juxtaposed a far downstream element adjacent to a far upstream site. Notably, BRG1 was recruited to the latter site, which triggered the appearance of a histone 'mark' linked to activation. This subtle change was crucial, as subsequent IFN-gamma-induced recruitment of the transcription factors STAT1, IRF1 and p300, as well as histone modifications, accessibility and additional loops, showed BRG1 dependency. Like BRG1, each remote element was critical for the induction of CIITA expression. Thus, BRG1 regulates CIITA through many interdependent remote enhancers, not through the promoter alone.
IFN-␥ induction of the CIITA (class II transactivator) promoter (pIV) requires Brahma-related gene 1 (BRG1), a chromatin-remodeling enzyme. However, the events that lead to pIV activation are only partially understood, and the point at which BRG1 acts is unknown. The first IFN-␥-induced event triggers nuclear translocation of STAT1 (signal transducer and activator of transcription 1), which binds IFN-␥-responsive promoters. BRG1 is recruited after activator binding at several other inducible loci, and STAT family members are known to bind BRG1, suggesting that BRG1 might act downstream of STAT1. Here, we delineate a comprehensive view of factor assembly and detailed histone modifications at pIV and show that all events, even STAT1 binding, require BRG1 at CIITA pIV and other IFN-␥ target promoters. Recruitment of IFN-stimulated gene factor-3 (ISGF3) [STAT1͞STAT2͞IFN regulatory factor 9 (IRF9)] to several IFN-␣-responsive promoters is also BRG1-dependent. In contrast, constitutive BRG1 association at IFN targets is STAT1-independent. Furthermore, BRG1 is required for IFN-induced restriction enzyme and DNase I accessibility at promoters. Thus, BRG1 has an apical role in cytokine-induced promoter assembly, acting upstream of STAT complexes at multiple IFN target loci.BRG1-associated factor ͉ chromatin ͉ interferon ͉ SWI͞SNF
Reading disabilities (RDs) have been associated with chromosome 6p with recent studies pointing to two genes, DCDC2 and KIAA0319. In this study, markers across the 6p region were tested for association with RD. Our strongest findings were for association with markers in KIAA0319, although with the opposite alleles compared with a previous study. We also found association with markers in VMP, but not with DCDC2. Current evidence indicates that differential regulation of KIAA0319 and DCDC2 contributes to RD, thus we used chromatin immunoprecipitation coupled with genomic tiling arrays (ChIP‐chip) to map acetylated histones, a molecular marker for regulatory elements, across a 500 kb genomic region covering the RD locus on 6p. This approach identified several regions marked by acetylated histones that mapped near associated markers, including intron 7 of DCDC2 and the 5′ region of KIAA0319. The latter is located within the 70 kb region previously associated with differential expression of KIAA0319. Interestingly, five markers associated with RD in independent studies were also located within the 2.7 kb acetylated region, and six additional associated markers, including the most significant one in this study, were located within a 22 kb haplotype block that encompassed this region. Our data indicates that this putative regulatory region is a likely site of genetic variation contributing to RD in our sample, further narrowing the candidate region. © 2009 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.