The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Agrobacterium tumefaciens has been widely used in plant genetic transformation. Hormone-encoding genes residing in the T-DNA region have been removed, resulting in disarmed Agrobacterium strains that are used in various transformation experiments. Nopaline Agrobacterium strains, however, carry another hormone gene, trans-zeatin synthesizing (tzs), that codes for trans-zeatin in the virulence region of the tumor-inducing plasmids. We investigated the activity and function of the tzs gene of a nopaline Agrobacterium sp. strain GV3101 in plant in vitro regeneration. Leaf explants of tobacco and Nicotiana benthamiana co-cultured with strain GV3101 exhibited active shoot regeneration in media without added plant growth regulators. On medium without plant growth regulators, transgenic shoots were also induced from explants co-cultured with GV3101 containing a binary vector. Enzyme-linked immunosorbent assay showed that cell-free extracts of Agrobacterium sp. strain GV3101 culture contained the trans-zeatin at 860 ng/liter. Polymerase chain reaction using tzs-specific primers showed that the tzs gene was present in strain GV3101 but not in other Agrobacterium strains. The study showed that the tzs gene in GV3101 was actively expressed, and that trans-zeatin produced in the Agrobacterium strain can promote plant shoot regeneration.
In eukaryotes, Histone acetylation levels directly regulate downstream gene expression. As a plant-specific Histone deacetylase (HDAC), HD2D is involved in plant development and abiotic stress. However, the response of HD2D to drought stress and its interaction proteins are still unclear. In this study, HD2D gene expression patterns were analyzed, revealing that the HD2D gene was highly expressed in roots and rosette leaves, but poorly expressed in the other tissues examined. The HD2D gene expression was induced by D-mannitol. The study investigated the responses of the wild-type plant (WT), HD2D-overexpression lines, and hd2d mutants to drought stress, further demonstrating that HD2D-overexpressing lines showed Abscisic acid (ABA) hypersensitivity and drought tolerance, and these phenotypes were not present in hd2d mutants. RNA-seq analysis revealed the transcriptome changes by HD2D under drought stress and showed that HD2D responded to drought stress through the ABA signaling pathway. In addition, the study demonstrated that CASEIN KINASE II (CKA4) directly interacted with HD2D. The phosphorylation of Ser residues of HD2D by CKA4 enhanced HD2D enzymic activity. Furthermore, the phosphorylation of HD2D was shown to contribute to lateral root development and ABA sensing in Arabidopsis, but, these phenotypes could not be reproduced by the overexpression of Ser-phosphorylated mutant of HD2D. Collectively, this study suggested that the HD2D responded to drought stress by regulating the ABA signaling pathway and the expression of drought stress-related genes. The regulation mechanism of HD2D mediated by CKII phosphorylation provides new insights for its response to ABA and lateral root development in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.