To investigate the usefulness of 18F-FP-CIT PET for assessing the severity of Parkinson's disease (PD) at various clinical stages, 41 patients with PD were divided into early (Hoehn&Yahr I-II, n = 23) and advanced (Hoehn & Yahr III-IV, n = 18) subgroups. 18F-FP-CIT PET was performed in these patients and 12 normal subjects. 18F-FP-CIT uptake in striatal subregions and its correlation with UPDRS were first evaluated by ROI analysis, and between-group differences were also analyzed by Statistical Parametric Mapping (SPM). Our results showed that striatal 18F-FP-CIT binding were significantly reduced to 70.9% (caudate), 46.8% (anterior putamen) and 24.0% (posterior putamen) in early PD compared with that of the control, and to 52.0%, 34.5% and 16.5% correspondingly in advanced PD, respectively. There was significant negative correlation between total motor UPDRS score of all parkinsonian patients and 18F-FP-CIT uptake in caudate nucleus (r = -0.53, p < 0.001), anterior putamen (r = -0.53, p < 0.001) and posterior putamen (r = -0.61, p < 0.001). SPM comparison of 18F-FP-CIT uptake between early or advanced PD and the control group showed significant decline in striatum, predominantly localized on the contralateral side and in the dorsal-posterior putamen. These results indicate that 18F-FP-CIT PET can serve as a suitable biomarker to represent the severity of PD in early and advanced stages.
SummaryGram-negative phytopathogenic bacteria, such as Pseudomonas syringae, deliver multiple effector proteins into plant cells during infection. It is hypothesized that certain plant and mammalian effector proteins need to traverse the type III secretion system unfolded and are delivered into host cells as inactive enzymes. We have previously identified cyclophilin as the Arabidopsis eukaryotic activator of AvrRpt2, a P. syringae effector that is a cysteine protease. Cyclophilins are general folding catalysts and possess peptidyl-prolyl cis/trans isomerase (PPIase) activity. In this paper, we demonstrate the mechanism of AvrRpt2 activation by the Arabidopsis cyclophilin ROC1. ROC1 mutants lacking PPIase enzymatic activity were unable to activate AvrRpt2. Furthermore, nuclear magnetic resonance spectroscopy revealed a structural change in AvrRpt2 from an unfolded to a folded state in the presence of ROC1. Using in vitro binding assays, ROC1's consensus binding sequence was identified as GPxL, a motif present at four sites within AvrRpt2. The GPxL motifs are located in close proximity to AvrRpt2's catalytic triad and are required for protease activity both in vitro and in planta. These data suggest that after delivery into the plant cell during infection, cyclophilin binds AvrRpt2 at four sites and properly folds the effector protein by peptidyl-prolyl cis/trans isomerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.