Biochar amendment has been proposed as a strategy to improve acidic soils after overuse of nitrogen fertilizers. However, little is known of the role of biochar in soil microbial biomass carbon (MBC) and bacterial community structure and diversity after soil acidification induced by nitrogen (N) deposition. Using high-throughput sequencing of the 16S rRNA gene, we determined the effects of biochar amendment (BC0, 0 t bamboo biochar ha −1 ; BC20, 20 t bamboo biochar ha −1 ; and BC40, 40 t bamboo biochar ha −1 ) on the soil bacterial community structure and diversity in Moso bamboo plantations that had received simulated N deposition (N30, 30 kg N ha −1 yr −1 ; N60, 60 kg N ha −1 yr −1 ; N90, 90 kg N ha −1 yr −1 ; and N-free) for 21 months. After treatment of N-free plots, BC20 significantly increased soil MBC and bacterial diversity, while BC40 significantly decreased soil MBC but increased bacterial diversity. When used to amend N30 and N60 plots, biochar significantly decreased soil MBC and the reducing effect increased with biochar amendment amount. However, these significant effects were not observed in N90 plots. Under N deposition, biochar amendment largely increased soil bacterial diversity, and these effects depended on the rates of N deposition and biochar amendment. Soil bacterial diversity was significantly related to the soil C/N ratio, pH, and soil organic carbon content. These findings suggest an optimal approach for using biochar to offset the effects of N deposition in plantation soils and provide a new perspective for understanding the potential role of biochar amendments in plantation soil.
The ecological stoichiometry of Moso bamboo (Phyllostachys edulis) during the "explosive growth period" (EGP) remains unknown. In a previous study, we showed that the carbon (C) required by shoots during the EGP is derived from attached mature bamboos. In this study, we attempted to answer the following two questions: (1) Is the nitrogen (N) and phosphorus (P) required by shoots during the EGP also derived from attached mature bamboos? (2) Is the ecological stoichiometry of Moso bamboo during the EGP consistent with the growth rate hypothesis (GRH)? We simultaneously investigated changes in the N and P concentrations and N:P ratios of shoots (young bamboos) and attached mature bamboo over an 11-month period. During the EGP of Moso bamboo shoots (April 15-May 29), N and P concentrations in the shoots declined markedly because of the dilution of biomass and the transport to the germinated leaves and branches, and the N:P ratio remained at a low level. The significant correlations between relative height and biomass growth rates and the concentrations of N and P and N:P ratios during the EGP were consistent with the GRH. To meet the needs of "explosive growth," N was presumed to be transferred from the branches and rhizomes of attached mature bamboos to the shoots via underground rhizomes, while P likely came from mature bamboo leaves and branches. After the emergence of the branches and leaves of young bamboo: (1) the N concentration of the new leaves initially decreased and then increased, (2) P concentration exhibited a marked decrease, (3) and N:P ratio gradually increased. Our findings regarding the N:P ratio of shoots (young bamboos) during the EGP are consistent with the GRH, and we surmise that mature bamboo supplies N and P to attached young shoots via underground rhizomes.
Soil dissolved organic carbon (DOC) and nitrogen (DON) play significant roles in forest carbon, nitrogen and nutrient cycling. The objective of the present study was to estimate the effect of management practices and nitrogen (N) deposition on soil DOC and DON in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz) plantations. This experiment, conducted for over 36 months, investigated the effects of four N addition levels (30, 60 and 90 kg N ha −1 year −1 , and the N-free control) and two management practices (conventional management (CM) and intensive management (IM)) on DOC and DON. The results showed that DOC and DON concentrations were the highest in summer. Both intensive management and N deposition independently decreased DOC and DON in spring (p < 0.05) but not in winter. However, when combined with IM, N deposition increased DOC and DON in spring and winter (p < 0.05). Our results demonstrated that N deposition significantly increased the loss of soil DOC and DON in Moso plantations, and this reduction was strongly affected by IM practices and varied seasonally. Therefore, management practices and seasonal variation should be considered when using ecological models to estimate the effects of N deposition on soil DOC and DON in plantation ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.